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Abstract: The paper introduces a method, called the albedo pumping-up, to derive new, physically plausible
BRDFs from an existing one or from any symmetric function. This operation can be applied recursively by arbitrary
number of times. An important application of this operation is the transformation of the Phong and Blinn models
in order to make them produce metallic effects. The paper also examines the albedo function of reflectance models
and comes to the conclusion that widely used models violate energy balance at grazing angles.
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1 Introduction

In computer graphics the optical material properties are usually modeled by reflectance models that are
defined by BRDFs. Intuitively, the BRDF represents the radiance reflected off the material illuminated
by point lightsources from a given direction.

The most famous BRDF model that can describe specular materials was proposed by Phong [Pho75]
and improved by Blinn [Bli77]. This model does not have physical interpretation but is only a mathe-
matical construction. Since the original forms violate physics (they are not symmetric), their corrected
versions [ICG86][Lew93] are preferred in global illumination algorithms.

The first model that has physical base was proposed by Torrance and Sparrow [TS66], which was
applied in rendering algorithms in [CT81]. Later, He, Torrance et. al. [HTSG91] introduced another
model that even more accurately represented the underlying physical phenomena [BS63]. These models
are not suitable for importance sampling since it would require the integration and inversion of the
probability density functions that are expected to be proportional to the reflected power. Not only is it
impossible to compute the required integral and inversion analytically, but even the calculation of BRDF
values requires significant computational effort for these physically based models. In their recent paper
Lafortune et. al. approximated a non-linear, metallic BRDF by the sum of modified Phong models
[LFTG97]. The resulting BRDF is simple, but this approach requires a great number of elementary
terms to sufficiently represent highly specular materials at grazing angles.

Radiosity and Monte-Carlo ray-tracing rendering algorithms require that the BRDFs do not violate
physics. Such shading models must satisfy both reciprocity and energy balance, and are calledphysically
plausible[Lew93].

�This work has been supported by the National Scientific Research Fund (OTKA), ref.No.: F 015884, the Austrian-
Hungarian Action Fund, ref.No.: 29¨o4, 32öu9 and the Spanish-Hungarian Action Fund, ref.No.: E/9.
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Reciprocitythat was recognized by Helmholtz is the symmetry property of the BRDF (fr, [sr�1]),
which is defined by the following equation [Min41]:

fr(L;V) = fr(V;L); (1)

whereL is the unit vector pointing towards the incoming light and the unit vectorV defines the view-
ing direction. Several rendering algorithms, including ray-tracing, takes advantage of this symmetry
property.

Suppose that the surface is illuminated by a beam from directionL. Energy balancemeans that the
albedo, that is the fraction of the total reflected power, cannot be greater than 1:

a(L) =

Z




fr(L;V) � cos�V d!V � 1: (2)

Energy balance makes the linear operator of the rendering equation or some of its powers [NN95] a
contraction, which is usually required by iterative and random walk methods to converge to the solution.
Particularly, the albedo together with occlusion conditions determine the norm of the integral operator
and consequently the conditioning of the rendering equation, and thus describe the speed of convergence
of the iterative methods, and can be used to specify how many light bounces are to be computed during
random walks.

1.1 Perceptual based fitting

The albedo and the BRDF characterize a material in two different aspects. The BRDF expresses the
radiance reflectivityof the material — that is the response to point lightsources —, while the albedo
describes itsenergy reflectivityand is responsible to the response for uniformly distributed (so called
sky-light) illumination. Concentrated point-like and uniformly distributed lightsources represent the two
extreme cases of possible illuminations.

Formally, if a surface is illuminated by a point lightsource of power4� at distance 1 in directionL,
then the observer at directionV will perceive:

Lout(V) = fr(L;V) � cos�L: (3)

On the other hand, if the illumination is constant in all directions and its radiance is 1, then the
perceived radiance is:

Lout(V) =

Z




fr(L;V) � cos�L d!L = a(V): (4)

Since perception is affected by both point lightsources (sun, electric bulbs) and sky-light illumination
(sky, diffuse room, large area lightsources), in order for a reflectance model to be realistic, both the BRDF
weighted by the cosine factor and the albedo should accurately follow the corresponding characteristics
of the real materials. So far, fitting has been made only on the the BRDF using usually least square error
metric. In perceptual based fitting the albedo should also be considered, and the maximal relative errors
of both the weighted BRDF and of the albedo should be minimized simultaneously. The relative error
corresponds to the logarithmic characteristics of the human vision system.

1.2 Physically plausible, but not physically based models

Let us consider the specular part of the original versions of the Phong [Pho75] and Blinn [Bli77] models.
Using the widely accepted notations whereR is the mirror direction ofL,N is the unit normal vector,
andH is the halfway unit vector betweenL and the view vectorV, the Phong and Blinn models are
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defined as thenth power of the dot products(RV) and(NH), respectively, divided by the cosine of the
incident angle.

fr;Phong(L;V) = cPhong(n)(R �V)n= cos �L;

fr;Blinn(L;V) = cBlinn(n)(N �H)n= cos �L: (5)

These models are not symmetric because of the division bycos �L, and thus are not physically plau-
sible. A simple way of making them physically plausible is the elimination of this division [Lew93],
resulting in the following versions:

f 0
r;Phong(L;V) = cPhong(n)(R �V)n;

f 0
r;Blinn(L;V) = cBlinn(n)(N �H)n: (6)

The Lafortune model [LFTG97] also falls into this category, but uses a special type of dot product:

fr;Lafortune(L;V) = cLafortune(n; s)(RxVx +RyVy + sRzVz)
n (7)

wherecPhong(n),cBlinn(n), cLafortune(n; s) are scalar functions of material constants.
For largen values the BRDF gets highly specular. However, the Phong and Blinn models cannot

provide metallic or mirror looking since as the incident angle grows towards the grazing angle, the ratio
of the reflected power as well as the output radiance decrease. Ifn goes to infinity, then the reflected
radiance and the albedo converges to zero for 90 degree incident angle since in this limit case the albedo
follows the cosine function. Intuitively, the decrease of the radiance means that if we look at a Phong-
mirror, then the image reflected in the mirror gets darker for greater reflection angles (the non-plausible
versions do not exhibit this darkening). Note that Lafortune’s model tries to reduce this phenomenon
by using a factors to suppress the BRDF close to perpendicular angles and thus giving an emphasis to
grazing angles.

2 Analysis of the energy reflectivity of classical BRDF models

The energy balance of the reflectance models can be represented by their albedo function. Supposing that
the Fresnel term is 1 (for silver this is practically true), the albedos of the Phong, He-Torrance, Cook-
Torrance and the Ward [War92] models are shown in figure 1. Note that the Cook-Torrance and the
Ward models diverge at grazing angles, while the Phong, He-Torrance and Ward BRDFs badly decrease
for greater incident angles. Since shiny metals tend to be good energy mirrors even for larger incident
angles, the decrease of the albedo for larger incident angles makes a model not realistic for representing
metallic objects.

The divergent behavior of the Cook-Torrance and the Ward models was quite unexpected, since these
models have been believed to be physically plausible, and this type of divergence may generate incorrect
results and may cause instability when rendering special scenes. This kind of divergence is caused by the
application ofH instead ofR in the reflectance model. Models of typeN �H cannot effectively separate
viewing directions that are close to the mirror direction and therefore the size of the solid angle of the
highlight cannot shrink depending onL. For grazing angles the BRDF should converge to a dirac-delta
like shape (the value of BRDF goes to infinity, while the albedo should be limited), but the not sufficient
shrinking of the support of the highlight does not allow that. The following section formally examines
this phenomenon.

2.1 Divergence of the Cook-Torrance and Ward models

Let us denote the angle between the normal vector and the halfway vector by�, and the surface roughness
parameter bym. The BRDF function of the Ward model [War92] is

fr;Ward(L;V) =
1

4�m2
� exp (�tan2 �=m2) �

1p
(N � L)(N �V)

; (8)
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Figure 1: Albedo functions of the Phong (n = 150), He-Torrance (�0 = 0:1; � = 1:7), Cook-Torrance
(m = 0:1) and Ward (m = 0:1) models

Assuming that the Fresnel factor is 1, the BRDF of the Cook-Torrance model [CT81] is

fr;Cook(L;V) =
1

4�m2 cos4 �
� exp (�tan2 �=m2) �

G(N;L;V)

(N � L)(N �V)
; (9)

where thegeometry factorG [SKe95] is

G(N;L;V) = minf2 �
(N �H)(N �V)

(V �H)
; 2 �

(N �H)(N � L)

(L �H)
; 1g: (10)
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Figure 2: The relations between the domains ofL,H andV vectors (left figure: domain ofL is too big
compared to the domain ofH; right figure: domain ofL is small compared to the domain ofH)

Let us consider the situation around the highlight close to the grazing angles, that is whereV � R,
H = (L +V)=jL +Vj � N,N � L � 0 andN �V � 0. We have to show that it is possible to move
L towards grazing angles in a way that the albedo will diverge along this path. An appropriate path is a
sufficiently small arc of the main circle of the directional hemisphere. For a given vectorL, the albedo
integral requires the consideration of all vectorsV. However, establishing a lower bound, only those
viewing vectors are considered which, together withL result in thoseH halfway vectors that are inside
a cap (spherical circle aroundN) (figure 2). SinceH = (L +V)=jL +Vj should hold, the allowable
domain of viewing vectorsV can be determined from these two regions by “spherical mirroring” of each
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point in the domain ofL onto each point in the domain ofH. The left figure demonstrates that if the
domain ofL is too big compared to that ofH, then thoseV vector sets which correspond to differentL
vectors will not have a common intersection. However, if the domain ofL is small compared to that of
H, then theV vector sets corresponding to differentL vectors will have a common intersection (right
figure 2). This region of intersection constrained to the the upper hemisphere is called thecritical region.

In the Ward model, factor(1=4�m2) � exp (�tan2 �=m2) can be lowerbounded inside thecap, so
can the(1=4�m2 cos4 �) � exp (�tan2 �=m2) factor of the Cook-Torrance model. Thus we can find
appropriate positive constants�Ward, and�Cook so that

1

4�m2
� exp (�tan2 �=m2) � �Ward;

1

4�m2 cos4 �
� exp (�tan2 �=m2) � �Cook: (11)

Considering the geometry term and the denumerator of the Cook-Torrance model, we can further
restrict the domain ofL and thecap for H to guarantee that the constant 1 is the real minimum in the
geometry term, thus here we can apply the following substitution

G(N;L;V)

(N � L)(N �V)
=

1

(N � L)(N �V)
: (12)

Using the constant lower bounds valid inside thecap, we can obtain:

�Wardp
(N � L)(N �V))

� fr;Ward(L;V);

�Cook
(N � L)(N �V)

� fr;Cook(L;V): (13)

For the albedo, a lowerbound can be established by bounding the hemispherical domain
 to the
critical region
critical and using inequality (13). Let us consider the Ward model:

aWard(L) �

Z


critical

�Wardp
(N � L)(N �V)

� (NV) d!V =
�Wardp
(N � L)

Z


critical

q
(N �V) d!V: (14)

For the albedo of the Cook-Torrance model, we can obtain:

aCook(L) �

Z


critical

�Cook

(N � L)(N �V)
(N �V) d!V =

�Cook

(N � L)
� j
criticalj: (15)

Since at grazing angles(NL) converges to zero, the lowerbounds in equations (14) and (15) diverge,
which forces the albedo of the Ward and Cook-Torrance models to diverge as well.

3 Albedo pumping-up

Examining the albedo functions of the plausible Phong and Blinn models, we can realize that they are two
small for higher incident angles, thus they cannot provide, for example, metallic appearance. If we could
find an operation that is not too complicated and preserves reciprocity and energy balance of a known
BRDF model, but increases its albedo, then the application area of these models could be significantly
widened.

We propose the following operation, which starts with an arbitrary, but symmetric BRDFfr(L;V),
or with a symmetric function, and corrects this as follows to obtain a new BRDF:

f�
r
(L;V) =

fr(L;V)

g(L;V)
; (16)
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where we require functiong to be a symmetric function ofL andV, and also

max(a(L); a(V)) � g(L;V) � 1 (17)

to hold.
Note that even if the original BRDF is only symmetric, but is not energy preserving, then the first

pumping-up operation makes it energy preserving and thus physically plausible.
Assume that functiong is not zero (except for a set of null measure). Sinceg(L;V) � 1, we obtain

a�(L) � a(L) for the albedoa� of f�r (L;V). Furthermore, if for some of the directionsg(L;V) < 1,
thena�(L) is definitely greater thana(L). Consequently, equation (16) increases the albedo, which
justifies our name “pumping-up”.

The new BRDF is obviously symmetric, thus only the energy conservation must be proven to demon-
strate that the pumped-up model is also physically plausible.

The albedo off�r (L;V) is

a�(L) =

Z




fr(L;V)

g(L;V)
� cos�V d!V �

Z




fr(L;V)

max(a(L); a(V))
� cos�V d!V =

1

a(L)

Z




fr(L;V) � cos�V d!V +

Z


V

fr(L;V) � (
1

a(V)
�

1

a(L)
) cos�V d!V � 1: (18)

where
V contains those directions for whichmax(a(L); a(V)) = a(V).
In order to realize that the albedo is less than 1, let us consider the sum of the last two terms. The

integral of the first term isa(L), thus the complete first term equals to 1. Since in
V, factor(1=a(V)�
1=a(L)) is negative, the second integral is negative and thus the albedo is less than 1. Summarizing, we
obtain:

a(L) � a�(L) � 1: (19)

The set
V is empty only ifa(L) = 1, which results ina�(L) = 1. Since real materials absorb some
energy, albedo pumping-up always increases the albedo.

Equation (16) can also be used recursively several times, which generates a monotonically increasing
sequence of albedo functions. In order to make the evaluation of the pumped-up BRDF fast during
rendering, the albedo should be precomputed and stored in a one-variate table.

3.1 Definition of the correction term

We examine two alternatives for the definition of correction termg and analyze their effect on the Phong
and Blinn models.

First, let the correction term be

g1(L;V) = max(a(L); a(V)): (20)

This function obviously satisfies inequality (17).
The effects of this type of pumping-up on the Phong and Blinn models are shown in figure 3 and

figure 4, respectively. Note that the albedos resulted by recursive pumping-ups converge to the albedo of
the ideal mirror (constant 1).

It is also worth examining the output radiance assuming a single point-like lightsource of intensity4�

at distance 1 in directionL. In this case the irradiance iscos�L. The output radiances of the pumped-up
Phong and Blinn models at different incident directions are shown in figure 3 and figure 4, respectively.
These figures demonstrate that the “Phong and Blinn mirrors” get darker for greater incident angles, but
the pumping-up reduces this effect. However, after several pumping-up operations the output radiance
can significantly exceed the received irradiance. This means that for certain viewing directions the mirror
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Figure 3: Albedo and reflected radiance of the reciprocal Phong model and its pumped-up versions
(n=20)
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image is brighter than the original one. This phenomenon can be observed on rough metals and is called
theoff-specular peak. However, if this effect is too strong, then the image will be unrealistic.

This artifact can be eliminated by the “controlled albedo pumping-up” that is discussed by the fol-
lowing section.

3.2 Controlled albedo pumping-up

In order to control the radiance at grazing angles, another correction term is chosen:

g2(L;V) = max(a(L); a(V); (N �V); (N � L)): (21)

Since the dot products are not greater than 1, functiong2 also meets requirement (17).
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Figure 5: Controlled pumping-up of the reciprocal Phong model (n = 20)

The albedos and the output radiances of the Phong and the Blinn models after controlled pumping-up
are shown in figure 5 and in figure 6, respectively.

Note the this type of controlling also has its price. Namely, the perfect energy mirror cannot be
generated using many recursive pumping-up operations. The process will converge to an albedo that is
below the constant 1. Note that forn = 20, the Phong model is worth pumping-up 2 or 3 times, but the
albedo of the Blinn model does not significantly increase with the second and consecutive pumping-up
operations.

The limitation of the output-radiance and the increase of the albedo are two contradicting objectives.
If we optimize for one, then the other will get farther from its desired shape. Since the Phong model’s
lobes are thinner, it is better in redistributing bigger power response if the albedo is pumped-up.
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If we consider the repetition of the controlled pumping-ups of the Phong model, an interesting ob-
servation can be made. The final, pumped-up BRDF can also be obtained in the following, very simple
form:

fr(L;V) = cn �
(R �V)n

max((N � L); (N �V))
: (22)

wherecn � (n+ 2)=2� must hold in order for the model to preserve energy balance.
The albedo functions of different exponentsn and the output radiance of thisnew modelare shown

in figure 7.

0

0.2

0.4

0.6

0.8

1

1.2

0 10 20 30 40 50 60 70 80 90

al
be

do

angle

Albedo functions of the new model for different n values

n=10
n=50

n=100
n=1000
n=5000

0

0.2

0.4

0.6

0.8

1

1.2

1

Output radiance of the New model at 0, 40 80 degrees

New model
1
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4 Simulation results

The following images have been rendered by Monte-Carlo ray-tracing method applying importance sam-
pling. Color computation was carried out at 8 discrete wavelengths, then using the color matching func-
tions the XYZ primaries were generated, which were finally converted to RGB. The material properties
of the metals (index of refraction and extinction coefficient), color matching functions and the XYZ to
RGB conversion matrix were taken from [Gla95].

Figure 8 show images of metallic objects, rendered with the reciprocal Phong and its pumped-up
reflection models, usingn = 20 andn = 5000 exponent parameters. The scene is illuminated by both
point lightsources and sky-light. Note that pumping-up makes the image brighter and also more metallic
looking. Images ofn = 5000 demonstrate that the original Phong model is a bad energy mirror, since
the sky-light illumination cannot make the surfaces bright where the angle of viewing is large. However,
pumping-up eliminates this problem.

5 Conclusions

The paper presented a method to control and tune the shape of the albedo function, which is called the
“albedo pumping-up”. The operation can be applied recursively. Albedo pumping-up can improve the
energy response without violating the physical plausibility.

The elaboration of this operation was inspired by the need to make the Phong and Blinn models
appropriate for metallic objects. The original Phong and Blinn BRDFs are “dark” for greater incident
angles from two different aspects. On the one hand, the output radiance converges to zero. On the
other hand, the fraction of the total reflected energy also converges to zero if the exponents of these
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models go to infinity when approximating highly specular materials. These models are poor radiance-
mirrors and energy-mirrors at grazing angles. Our intention was to improve the albedo function by the
introduced pumping-up operation to get a better “energy-mirror”, and hoped that it also results in a good
“radiance-mirror”. This worked well for the Phong model, but the Blinn model showed super-metal
characteristics even for moderate increase of the albedo function (the output radiance of super-metals
significantly exceeds the input radiance and the allowed size of the off-specular peak). In order to limit
the output radiance, we introduced thecontrolled albedo pumping-up, which guarantees that the output
radiance does not exceed the input radiance, but it also drastically limited the increase of the albedo for
the Blinn model.

Based on these experiences, other reflectance models of theN � H family have been analyzed to
find out how they tried to compromise these two contradicting objectives. The analysis and the nu-
merical simulations resulted in an unexpected conclusion that the Ward and the Cook-Torrance models
violate energy balance and their albedos diverge to infinity at grazing angles, thus these models are not
physically plausible. We believe that theN �H family is not appropriate for the construction of metallic
BRDFs. Their albedos either badly decrease (Blinn model) or diverge (Ward and Cook-Torrance models)
at grazing angles.

The albedo is not an abstract feature of a material but can be seen directly. The perceived radiance
reflected of an object illuminated by uniform distributed light is just proportional to the albedo function
at the viewing direction if the BRDF is reciprocal. This phenomenon is also demonstrated by the color
images, where the albedo pumping-up improved not only the highlights but also the parts affected only
by the sky-light illumination and viewed at large angles.

In order to emphasize the role of the albedo, theperceptually based fittingwas proposed, which fits
both the BRDF (response to point lightsources) and the albedo (response to sky-light) simultaneously
to find minimal relative error. The application of relative error metric is justified by the logarithmic
characteristics of the perception. This type of fitting requires the storage of the albedo functions in
addition to BRDFs in material databases. The albedo can be measured by integrating sphere or using
distributed lighting.
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Figure 8: A golden tank with aluminum, silver, copper and golden pyramids rendered using the reciprocal
Phong model (top) and using the Phong model pumped-up once (bottom) (left:n = 20, right: n = 5000)
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