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Abstract
This paper presents a new mutation strategy for the Metropolis light transport algorithm, which works in the unit
cube of pseudo-random numbers instead of mutating in the path space. This transformation makes the integrand
have lower variation and thus increases the acceptance probability of the mutated samples. Higher acceptance
ratio, in turn, reduces the correlation of the samples, which increases the speed of convergence. We use both
local mutations that choose a new random sample in the neighborhood of the previous one, and global mutations
that make “large steps”, and find the samples independently. Local mutations smooth out the result, while global
mutations guarantee the ergodicity of the process. Due to the fact that samples are generated independently in
large steps, this method can also be considered as a combination of the Metropolis algorithm with a classical
random walk. If we use multiple importance sampling for this combination, the combined method will be as good
at bright regions as the Metropolis algorithm and at dark regions as random walks. The resulting scheme is robust,
efficient, but most importantly, is easy to implement and to combine with an arbitrary random-walk algorithm.

1. Introduction

Global illumination algorithms have to identify those light
paths that connect the light sources to the eye via reflections
and refractions and integrate their image contribution for
each pixel of the screen. Since the domain of such light paths
has high dimension, Monte-Carlo quadrature rules are ap-
plied, which generateM random light pathsz1; : : :;zM with
probability densityp(z) and approximate the integrand as
follows:

Φ j =
Z

P

F(z) dz� 1
M

M

∑
i=1

F(zi)

p(zi)
;

whereΦ j is the value stored in pixelj, P is the domain of
the light paths, andF(z) is the image contribution of path
z. Monte-Carlo quadratures obtain the result with certain
variance. The variance can be reduced if the light paths are
sampled with a probability density that is at least approx-
imately proportional to the contribution of the light path.
This variance reduction technique is calledimportance sam-
pling 9. Since a path carries light on severalwavelengths,
the contribution is a vector, thus the selection of a “propor-

tional” probability density requires further considerations. In
order to express where the elements of the vector are large, a
scalar contribution function I(z) is defined. This scalar con-
tribution function can, for example, represent the luminance
of the carried light. The goal is then to sample the domain
of light paths with a probability densityp(z) that is pro-
portional to the scalar contribution function:p(z) = I(z)=b.
Scalarb comes from the requirement of normalization:b =R
P

I(z) dz: Let us consider the relevant techniques to attack
this problem, including local and multiple importance sam-
pling and the Metropolis method.

1.1. Local and multiple importance sampling

Importance sampling should obtain light paths with a prob-
ability density that mimics the scalar contribution function.
Since the contribution of the path is the product of the emis-
sion at the beginning and the cosine weighted BRDFs at
the visited points,local importance samplingconstructs the
probability density step-by-step taking into account these
factors independently. BRDF sampling3 obtains a random
direction that mimics the cosine weighted BRDF, light
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source sampling8 finds a point with a probability that is pro-
portional to the emission, and Russian roulette generates the
next step or obtains zero contribution with the probability of
the reflection. In order to sample directions, points, termi-
nation, etc. of a particular path, we should take uniformly
distributed pseudo or quasi random numbers in the unit in-
terval and transform them to the path space. Those random
numbers from which a complete path is generated can be
considered as a point in a high-dimensional unit cube. Let
us call this cubeU as theprimary sample space, and denote
the transformation from here to the space of light paths by
z = S(u). The pixel contribution can also be obtained as an
integral in the primary sample space:

Φ j =
Z

U

F(S(u)) �
����dS(u)

du

���� du;

where ����dS(u)
du

����= 1
pS(u)

is the Jacobi determinant of the inverse mapping. Intuitively,
the Jacobi determinant expresses the local expansion be-
tween two corresponding spaces2, thus if u is a uniformly
distributed random variable, thenpS(u) will be the probabil-
ity density ofz = S(u).

Unfortunately,pS cannot be made exactly proportional to
the scalar contribution function if the directions and the light
source points are sampled independently. If the target of the
next step is selected with light source sampling, then the
probability density of the reflection direction will not be pro-
portional to the cosine weighted BRDF. On the other hand, if
the next ray is sampled with BRDF sampling, then the target
point will not be distributed proportionally to the emission
intensity. It means that although the weighted contribution
F(S(u))=pS(u) and the weighted scalar contribution func-
tion I(S(u))=pS(u) have lower variation thatF and I , re-
spectively, but the weighted scalar contribution function is
not constant.

Different importance sampling strategies decide differ-
ently what is sampled and what is computed from the
sampled parameters, and thus might be better or worse to
mimic certain types of light transfers.Multiple importance
sampling12 tries to get the best of these algorithms by com-
bining several different sampling techniques in a way that
the variance is further reduced. Suppose that we can sample
a light pathz with N different sampling techniques associ-
ated with p1(z); : : :; pN(z) densities andM1; : : :;MN sam-
ple numbers. If these methods were used alone, then method
n would weight integrand sampleF(z) with 1=(pn(z)Mn).
If this sampling technique is bad for a given samplez0,
then it can happen thatpn(z0) is small whileF(z0) is not
small, which would result in a few but very large contri-
butionsF(z0)=(pn(z0)Mn) and consequently high variance.
The combination strategy of multiple importance sampling
emphasizes a given method where it is good, thus eliminates

these bad samples.Balance heuristicwould weight the inte-
grand by the average probability of all sampling techniques,
i.e. by 1=(∑n pn(z)Mn). Maximum heuristic, on the other
hand, would considerF(z0)=(pn(z0)Mn) only if pn(z0)Mn

is the maximum for differentn values. Thus if at least a
single elementary sampling technique is good for a partic-
ular samplez0 (i.e. its density is not small if the contribution
is large), then the weighted average will contain many, not
too large samples, which reduces the variance. Thus multiple
importance sampling can further reduce the variation of the
weighted contribution, but it is still far from being constant.

1.2. Metropolis light transport

Unlike local importance sampling, Metropolis method can
sample a complete path as a whole, not just the steps of this
path14. It requires no a-priori knowledge to construct a prob-
ability density function in advance, but converges to the re-
quired probability density automatically.

Metropolis method constructs a Markovian process whose
stationary distribution isp(z) to generate samples according
to p(z) = 1=b � I(z). The next statezi+1 of this process is
found by letting an almost arbitrarytentative transition func-
tion T(zi ! zt) generate atentative samplezt which is either
accepted as the real next state or rejected making the next
state equal to the actual state. The decision uses the “accep-
tance probability” a(zi ! zt) that expresses the increase of
the scalar contribution function (if this “acceptance probabil-
ity” is greater than 1, then the sample is accepted determin-
istically). The formal definition of this Markovian process
fz1;z2; : : :;zi ; : : :g is as follows:

for i = 1 to M do
Based onzi , sample a tentative pointzt usingT(zi ! zt)

a(zi ! zt ) =
I (zt )�T(zt!zi )
I (zi )�T(zi!zt )

// accept with probability a(zi ! zt )

Generate random numberr in [0;1].
if r < a(zi ! zt ) then zi+1 = zt

else zi+1 = zi

endfor

Veach and Guibas14 recognized that the basic Metropolis
algorithm needs to be modified to make it suitable for the
solution of the global illumination problem. Such modifica-
tions allowed a single process to be used simultaneously for
all pixels, the reduction of the start-up bias and the utilization
of the rejected samples. Let us examine these modifications
separately.

Global illumination requires a separate integral to be
solved for each pixel. For pixelj, integrandF(z) is the prod-
uct of the measurement function of this pixel and the radi-
ance carried by this path. In order to use a single process for
all pixels, functionI can be defined as the scalar contribution
to any pixel of the screen, that is,I mimics only the radiance
and will be independent of the pixel measuring function. In
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this way, the number of samples contributing to a single pixel
will be proportional to the luminance of this pixel.

Metropolis sampling converges to the desired probability
distribution, but at the beginning of the process the samples
are not selected with the required probability, which intro-
duces some error in the estimation. This error is called as
the start-up bias11. The original Metropolis light transport
algorithm uses the following solution for the problem. In a
preprocessing phase random samples are generated and the
initial seed of the Metropolis algorithm is selected from this
random population with a probability that is proportional to
the scalar contribution function. Since in this case even the
first sample follows the desired distribution, the start-up bias
problem is eliminated in a statistical sense, i.e. it is converted
to noise.

Veach recognized that it is worth using also the rejected
samples since they also provide illumination information.
Note that a tentative sample is accepted with probabilitya,
while the original sample is kept with probability 1�a. Re-
placing this random variable by its mean, both locations can
be contributed but the contributions of the tentative sample
and the old sample should be weighted witha and 1� a,
respectively.

Summarizing, the pseudo-code of the Metropolis light
transport algorithm is as follows:

Generate path seeds
Approximateb =

R
I(z) dz from the seeds

Find z1 from the seeds usingI(z)
for i = 1 to M do

Based onzi , sample a tentative pointzt usingT(zi ! zt )

a(zi ! zt ) = min
n

I (zt )�T(zt!zi )
I (zi )�T(zi!zt )

;1
o

Select pixelj to whichzi contributes

Φ j += b
M �

F(zi )
I (zi )

� (1�a(zi ! zt))

Select pixelk to whichzt contributes

Φk += b
M �

F(zt )
I (zt )

�a(zi ! zt )

// accept with probability a(zi ! zt )

Generate random numberr in [0;1].
if r < a(zi ! zt ) then zi+1 = zt

else zi+1 = zi

endfor

Unlike other Monte-Carlo algorithms, the Metropolis al-
gorithm generates not statistically independent, but cor-
related samples. The statistical independent sampling of
Monte-Carlo quadrature guarantees that if the standard de-
viation of random variableF(z)=p(z) is σprimary, then the
standard deviation of the Monte-Carlo quadrature will be
σprimary=

p
M after evaluatingM samples (the standard de-

viation is a good measure of the integration error). In case of
correlated samples, the standard deviation of the quadrature
can be bounded according to the Bernstein theorem7:

σ� σprimary �

s
1+2∑M

k=1R(k)

M

whereR(k) is an upper-bound of the correlation between
F(zi)=p(zi) andF(zi+k)=p(zi+k). This formula shows that
the correlation of the samples can increase the error11; 1.

Let us consider what it means from the point of view of
mutation strategies. If the mutations are small, then the next
sample has no chance to be relatively independent of the pre-
vious one, thus the correlation will be high. Interestingly,
large mutations can also lead to highly correlated samples
(Figure1). Suppose that the process has found a peak of the
integrand. Having made a large perturbation, the scalar con-
tribution function of the tentative sample will be much lower,
thus the chance of accepting it will also be low. The point
on the peak remains to be the sample point for many steps,
which is responsible for high correlation.

accepted
rejected

small perturbations large perturbations

I I

Figure 1: Both large and small mutations can result in high
correlation.

Considering this, we can conclude that a single, constant
mutation strategy cannot provide an effective algorithm. In-
stead we need a mutation strategy that is generally large but
gets smaller around the peaks of the integrand. The origi-
nal Metropolis light transport algorithm proposes the ran-
dom combination of several strategies, each of them being
tailored for a particular type of light transfer14. The con-
struction and the combination of these elementary strategies
requires care and usually involves scene dependent parame-
ter tuning. In this paper we present a simpler method, which
automatically results in efficient mutations.

2. Finding a good space for making mutations

The conclusions of the previous section immediately lead to
the following question. Is it possible to adapt the mutation
strategy itself such that the perturbation gets automatically
smaller when we are around the peak and thus anticipate that
larger perturbations will be rejected? At the first glance, the
answer is negative since to construct such tentative transi-
tion probabilities, explicit knowledge of the scalar contribu-
tion function would be needed, which is not available. How-
ever, if the domain and consequently the integrand is trans-
formed in a way that the integrand has lower variation, the
number of rejections can greatly be reduced (note that the
rejection probability is proportional to the ratio of contri-
butions). Such transformation would obviously expand the
domain where the original integrand is large and shrink it
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Figure 2: The correspondence between the mutations in the primary sample space and in the path space.

where the original integrand is small. If constant size pertur-
bations are used in the transformed domain, they would cor-
respond to larger steps where the original integrand is large
and smaller steps where it is small.

Such transformation is for free if the random paths are
built using importance sampling, e.g. BRDF sampling, light
source sampling, Russian roulette and multiple importance
sampling. As concluded, these techniques transform the
points of theprimary sample spacein order to place samples
in path regions approximately proportional to their contribu-
tion. This transformation makes both the new integrand

F�(u) = F(S(u)) �
����dS(u)

du

����= F(S(u))
pS(u)

and the new scalar contribution function

I�(u) =
I(S(u))
pS(u)

have lower variation, i.e. relatively flat. This is exactly what
we need. Thus the perturbation strategy that works in the pri-
mary sample space will adapt to the properties of the integral
and reduces the perturbation size where the integral is large.

Let us take an example to show how the perturbation in the
primary sample space affects the path. The example can also
be followed in Figure2. For the sake of simplicity, assume
that we use path tracing with direct light source computa-
tion at the end of the path in order to find a complete light
path (the proposed algorithm can work with other random
walk algorithms as well). Using two pseudo-random num-
bersu1;u2 a random point on the window is found and a
ray is traced through this point, which finds surface point~x1.
At ~x1 we takeu3 to randomly select a BRDF from the ele-
mentary BRDFs composing the reflection function at~x1 (e.g.
diffuse + specular) and to decide whether or not the walk
has to be terminated according to Russian roulette. Assume
that we decided to continue the walk, thus we use another
two random numbersu4;u5 to sample the direction with a
density that is approximately proportional to the selected el-
ementary BRDF. The obtained direction with starting point
~x1 define a new ray that is traced to find the new point~x2.
Here we decide again on the termination usingu6. Suppose
that the random numberu6 and the albedo at~x2 are such that

the walk is terminated. In order to apply direct light source
estimation, a point~y1 is sampled on the surface of the light
source using random numbersu7;u8. This light source point
is connected with the last point~x2 with a shadow ray that
tests if the light source point is visible from here. If the two
points are not occluded, we have established the following
light path: z = (~y1;~x2;~x1; ~eye). Clearly, this path is unam-
biguously defined by the vectoru = (u1; : : :;u8). The map-
ping z = S(u) is defined by the path ray-tracing scheme that
involves BRDF sampling, Russian roulette and light source
sampling.

Let us now slightly perturb the elements of primary sam-
pleu = (u1; : : :;u8). Decision parametersu3 andu6 are used
to terminate the walk and to select from elementary BRDFs.
If the perturbations of these values fit in the range allowed
by the albedos and the perturbation of positions and direc-
tions do not alter the respective visibilities, then the new val-
ues lead to the same decisions, thus the structure of the path
is not altered (for example, the new path will also connect
4 points). However, when one of the new values steps over
the albedo limits or alter the visibility relationships, then the
remaining part of the sub-path is cut or the previously termi-
nated walk has to be continued.

Since path tracing with direct light source computation at
the end is far from being the most efficient strategy to sam-
ple paths, we also implemented the proposed idea with bi-
directional path tracing12. This method produces an eye path
and a light path and connects all points of the two paths with
each other with deterministic shadow rays (Figure3). This
algorithm produces many paths and each of them can also
be generated differently by the same algorithm. For exam-
ple, the path connecting the eye via~x1 to light source point
~y1 contains a random ray between the eye and~x1 and a de-
terministic shadow ray between~x1 and~y1. This path could
also be obtained with a different probability in a way that
the deterministic shadow ray is between the eye and~x1 and
the connection of~x1 and~y1 is found randomly. In order to
get the best from these sampling techniques, we can use the
maximum heuristic of multiple importance sampling. The
reason of our preference of maximum heuristic over bal-
anced heuristic here is that maximum heuristic does not re-
quire all deterministic shadow rays to be traced. Maximum
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heuristic decides whether or not the weight of the sample
is non zero according to the path probabilities that can be
computed from the local BRDFs and from the light source
selection scheme, and are independent of the occlusions of
the shadow rays. The visibility is checked only if the weight
turns out to be positive and thus there is a chance for the
contribution to be not zero.

window

x

x

eye 
path

2

1,3 5,7,9

11

10

2,4
6,8

x3
1

y1

light 
path

deterministic
connections

Figure 3: A sample path generated by bi-directional path
tracing.

Bi-directional path tracing produces many path from a
single primary sample (for example, in Figure3 the eye path
connects three points and the light path connects two points,
which can be combined in six different ways). Thus the
definition of the scalar contribution function for such fam-
ily of paths requires additional considerations. One alterna-
tive would be the sum of the luminances of the elementary
paths. However, this would prefer long paths since longer
eye and light paths allow more combinations to be made,
which would increase the scalar contribution function and
consequently the selection probability. Working with long
and complex paths is not efficient computationally, thus a
better alternative for the scalar contribution function is the
maximum of the luminances of the elementary paths.

The proposed method is efficient if a small mutation in
the primary sample space corresponds to a small mutation in
the path space. However, when Russian roulette changes the
length of the eye path, then the coordinates of the eye path
might be assigned to the light path or vice versa, which can
cause large changes in the path space. To solve this problem,
the coordinates assigned to eye and light paths should be
separated. For example, coordinates of odd and even indices
can be used separately to define the eye path and the light
path, respectively (Figure3).

3. Large steps

The next problem that needs special care comes from the
regions of zero contribution. The Markovian process used
in Metropolis algorithm should be ergodic, i.e. all samples
of non-zero contribution should be generated sooner or later
with positive probability. In the global illumination setting it
is very likely that light paths of non-zero contribution form
islands in the path space. If the mutations are not big enough

to jump from one island to the other, then the ergodicity con-
dition cannot be met. In order to solve this problem, we in-
clude completely independent steps in the algorithm, which
obtain a tentative sample without considering what the ac-
tual state is. These global mutations are calledlarge steps.
Large steps have three different merits. They generate any
non-zero contribution point with positive probability, thus
the requirement of ergodicity is met. If a large step is ac-
cepted, then Metropolis process starts from a new random
seed, which significantly reduces the start-up bias error. Fi-
nally, the probability density of the tentative samples ob-
tained with large steps is known, which allows for their so-
phisticated secondary utilization according to the concept of
multiple importance sampling.

Let us consider how the tentative samples are worth gen-
erating in these large steps. In order to reduce correlation,
the acceptance probability should be maximized. Note that
the tentative probability of large steps depends only on the
target state, that isT(zi ! zt) = T(zt). Considering this, the
acceptance probability is:

a(zi ! zt) =
I(zt) �T(zi)

I(zi) �T(zt)
:

This probability could be set to 1 ifT(z) were propor-
tional to the scalar contribution function, but this would re-
quire the explicit knowledge of the scalar contribution func-
tion. If the large steps are examined in the primary sam-
ple space, then the acceptance probability has the following
form:

a(ui ! ut) =
I�(ut) �T�(ui)

I�(ui) �T�(ut)
:

Due to importance samplingI�(ut) is usually quite flat.
More precisely, it is as flat as BRDF sampling, light source
sampling and Russian roulette can describe the importance
of a path. Using the — rather crude — approximation that
the transformed scalar contribution function is constant, we
obtain:

a(ui ! ut)�
T�(ui)

T�(ut)
:

Thus the acceptance probability will be close to 1 if the mu-
tation function of the large steps are realized with a uniform
probability.

4. Designing mutation strategies in the infinite
dimensional cube: lazy evaluation

So far, we neglected the fact that the primary sample space,
i.e. the cube where the sample points are perturbed, is infinite
dimensional, where it is impossible to unambiguously define
a point with finite numbers. However, this is not a problem
if the coordinates of each point are evaluated in a lazy way.
Note that a point unambiguously defines a light path accord-
ing to the particular random walk algorithm incorporating
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BRDF sampling, Russian roulette and light source sampling,
but only the first few coordinates are used until the paths are
terminated according to Russian roulette. Let us evaluate,
store and perturb only those coordinates of the current point,
which have been needed by the longest path happened so far.
If it turns out that the current path is longer than the longest
path encountered so far and thus we need new coordinates,
then we have to repeat the life history just for these new co-
ordinates. We have to go back to their last use or if they have
not been used before, to the last accepted large step since
the last step generated all coordinates randomly and inde-
pendently of the former states (in this sense accepted large
steps are those critical time instances beyond which we do
not have to remember). If a coordinate has been never used,
then its initial value is obtained randomly as the large step
would have obtained it. Then the history happened since the
last use is played again, i.e. the coordinate is perturbed by
the times of the accepted perturbations happened since the
last use. Note that only the number of accepted mutations
counts since rejected mutations do not affect the future.

un

ku

last use 
of

new use 
of accepted 

mutations
un un

postponed (lazy)
mutations

Figure 4: Lazy evaluation of the coordinates: the mutations
of the not used coordinates are postponed until they are
needed again.

Let us define a counter calledtime for the global time of
the process which counts the number of accepted mutations.
Each coordinate is associated with a time-stamp calledmod-
ify that stores the global time when this coordinate was mod-
ified most recently. The time of the last accepted large step is
stored in variablelarge_step_time. When a new coordinate is
needed, it is checked whether this coordinate has been used
before. If not, it is initialized as a random number and its
time stamp is set tolarge_step_time. If it has already been
used, the value of the coordinate was set at timemodify. Then
the coordinate is perturbed bytime� modify times (Figure
4). The implementation of this algorithm is presented in Sec-
tion 6.

5. Utilization of rejected and large step samples

The original Metropolis light transport algorithm makes use
of rejected samples by replacing the random variable of the
random acceptance by its mean, and multiplies the original
and tentative values by the rejection and acceptance prob-
abilities. However, large steps allow us to do it even better

according to multiple importance sampling. Suppose that we
use two sampling techniques, and the first is the Metropolis
method that generatesM1 number of samples with probabil-
ity p1(u), while the second is the uncorrelated sampling of
large steps that computeM2 samples with probabilityp2(u).
When they are combined, balance heuristic13 would weight
the integrand samples by the average selection density, that
is by

w(u) =
1

M1p1(u)+M2p2(u)
:

The combination requires the knowledge of the sampling
probabilities of both methods. Metropolis algorithm gener-
ates a sample with the probability that is proportional to the
scalar contribution function:

p1(u) =
I�(u)

b
:

For large steps, uniform point selection is used, thus:

p2(u) = 1:

If the probability of large steps isplarge, then the number of
samples of the second method is expected to beplarge times
the number of samples of the first method, thusM1 = M and
M2 = plargeM.

Finally we should take into account that due to mean value
substitution the new, tentative samples of Metropolis method
will be weighted by acceptance probabilitya, while the old
samples are also used with weight 1�a. Putting these alto-
gether, the contribution of an old Metropolis sample is

(1�a) �w(u) �F�(u) =
(1�a) �F�(u)

(I�(u)=b+ plarge)M
:

When a large step is made, the generated path is a sample
of the Metropolis method and a sample of the uncorrelated
strategy at the same time. The Metropolis sample should be
weighted bya according to the mean value substitution, thus
the combined contribution of the two techniques is

a�w(u) �F�(u)+w(u) �F�(u)=
(a+1) �F�(u)

(I�(u)=b+ plarge)M
: (1)

Small steps can stem only from the Metropolis method, thus
their contribution is

a �w(u) �F�(u) =
a �F�(u)

(I�(u)=b+ plarge)M
: (2)

Equations (1) and (2) can be merged together if we suppose
that variablelarge_stepis 1 if a large step is made and zero
otherwise, thus the contribution of a new, i.e. tentative sam-
ple is

(a+ large_step) �F�(u)
(I�(u)=b+ plarge)M

:

Note that Metropolis method is good in generating bright
image sections while poor at dark regions since the number
of samples in a pixel is proportional to the luminance of this
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pixel. Random walks, on the other hand, provide pixel val-
ues with approximately the same relative error if they use
the same number of samples in each pixel. Thus when rela-
tive or other perceptual error metric is used, random walks
are better for darker regions. The proposed combination can
thus improve dark image areas. We expect that the combined
method is as good as Metropolis sampling in bright sections,
but can also handle dark regions as well as random walks.

6. Implementation details

Suppose that we already have a random walk implementa-
tion. In order to build the proposed Metropolis sampler into
this algorithm, the pseudo or quasi random number genera-
tor should be replaced, and the weighting of the light path
contributions should be altered.

Let us first consider the primary sample generator that
obtains a number in the unit interval in order to integrate
according to theith coordinate of the integrand. Function
PrimarySample takes coordinate indexi and also uses
a global variable calledlarge_step that is 1 if the ac-
tual mutation is a large step and 0 otherwise, and obtains
the actual value of coordinatei. The algorithm implements
the lazy evaluation method and pushes the previous values
onto a stack of the index–coordinate pairs, which should be
restored later if this sample is rejected by the Metropolis
method. The variable names are according to section4, vec-
tor u is the sample in the primary sample space, and each of
its coordinates has avalue in [0,1] and a local time stamp
calledmodify.

float PrimarySample(int i) {
if (u[i].modify < time) {
if (large_step) { // large step

Push(i, u[i]); // save state
u[i].modify = time;
u[i].value = random();

} else { // small step
if (u[i].modify < large_step_time) {

u[i].modify = large_step_time;
u[i].value = random();

}
// lazy evaluation of mutations

while (u[i].modify < time-1) {
u[i].value = Mutate(u[i].value);
u[i].modify++;

}
Push(i, u[i]); // save state
u[i].value = Mutate(u[i].value);
u[i].modify++;

}
}
return u[i].value;

}

This subroutine calls theMutate function to find a mu-
tated coordinate. As proposed in14, the mutations are con-
trolled by thes = s2 � exp(� log(s2=s1)U) formula, where
U is a uniformly distributed random variable in [0,1] and

the samples are expected in[s1;s2]. The following mutation
function gets the actual value and returns the mutated one:

float Mutate( float value ) {
float s1 = 1./1024, s2 = 1./64;
float dv = s2*exp(-log(s2/s1)*random());
if (random() < 0.5) {

value += dv; if (value > 1) value -= 1;
} else {

value -= dv; if (value < 0) value += 1;
}
return value;

}

In order to compute the contribution of the generated light
paths, the mean value substitution and the proposed multiple
importance sampling technique have been implemented. Re-
call that in these cases each step results in two samples that
should be contributed. However, an accepted sample should
be contributed at least two times, when it is born and when
it gets old. Thus we can still work with the contribution of
a single path at a time if the weightw of the multiple con-
tributed samples are cumulated. The followingNext func-
tion handles both rejected and accepted samples, but returns
only one of them to be contributed to the affected pixel. If
rejection happens, the returned sample is the rejected one,
since it will be invalid in the next cycle. However, if the sam-
ple is accepted, then the contributed sample is the old sample
while the weight of the new sample will be increased in the
next cycle. The function gets the affected pixel and its con-
tribution F�(u) in variablecontrib, and the transformed
scalar contributionI�(u) in variableI:

Sample Next(float I, Contrib contrib) {
float a = min(1, I/oldI); // accept prob.
newsample.contrib = contrib;
newsample.w = (a+large_step)/(I/b+plarge)/M;

// cumulate weight
oldsample.w += (1-a)/(oldI/b+plarge)/M;

if (random() < a) { // accept
oldI = I;
contribsample = oldsample;
oldsample = newsample;
if (large_step) large_step_time = time;
time++;
ClearStack(); // no state restoration

} else { // reject
contribsample = newsample;

// restore state
while( !IsStackEmpty() ) Pop(i, u[i]);

}
large_step = (random() < plarge) ? 1 : 0;
return contribsample;

}

If the path contributes to more than one pixels (as can hap-
pen in bi-directional path tracing), then variablecontrib
is an array. Note that we could remove the tentative transi-
tion probabilities from the formula of the acceptance proba-
bility since our small and large steps apply symmetric tenta-
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tive transition functions. When the mutation is accepted, the
stack of index–coordinate pairs is cleared byClearStack
without restoring its values. Upon rejection, on the other
hand, the algorithm returns to the original sample by pop-
ping the index–coordinate pairs of the point in the primary
sample space.

The color of the pixels are updated according to the re-
turned sample of this function. The affected pixels and their
contributions can be read fromcontrib, then the contri-
butions are multiplied with their weightscontrib.w and
added to the respective pixels.

7. Evaluation of the new method

In order to evaluate the proposed method, we implemented
it with path tracing, with simple bi-directional path tracing,
which was used in the original Metropolis light transport al-
gorithm, and also with normal bi-directional path tracing4; 12.
The main difference of the simple and normal bi-directional
path tracing algorithms is that the simple version connects
the end points of the shooting and gathering paths, while the
normal version establishes connections between all visited
points of the gathering and shooting paths, respectively.

First the standard Cornell Box scene was used for the error
analysis. In order to make the lighting difficult, the back wall
is a glossy mirror (the exponent of the Phong BRDF is 50)
and the specularity of the surfaces is high.

The original Metropolis light transport applied mutations
that replaced either the complete path or only a sub-part of
the path while the rest part remained unchanged. On the one
hand, such partial path mutations require less number of rays
to be shot than those mutations which would modify all rays
composing the path. On the other hand, these limited mu-
tations increase the correlation and explore just “planes” in
the high-dimensional integration domain. Thus if the muta-
tions change the path only partially, then we need more but
cheaper samples to obtain the solution. Since the proposed
method mutates all coordinates simultaneously and gener-
ates many paths from a single primary sample if normal bi-
directional path tracing is used, the new methods work with
more expensive samples. This means that in order to get a
fair comparison, we have to plot the error functions against
time and not against the number of mutations.

In order to evaluate the efficiency of mutating in the pri-
mary sample space and multiple importance sampling, we
took three different algorithms. The first one perturbed the
samples in the path space, and both the original and the
tentative samples were used in the quadrature according to
mean value substitution, which corresponds to the original
Metropolis light transport algorithm. In the second case, we
perturbed the samples in the primary sample space and al-
lowed large steps but still used the original mean value sub-
stitution for old and tentative samples. In the third experi-
ment the large steps were taken into consideration with mul-

tiple importance sampling. First we allowed large mutations,
i.e. a single mutation could cover about 20 percent of the do-
main of the corresponding variable. As expected, mutating in
the primary sample space significantly increased the accep-
tance probability. The acceptance ratios of the original and
the new algorithms were 43% and 76%, respectively. This
higher acceptance ratio reduces the start-up bias and also the
variance of the algorithm. However, when the perturbation
size is small, the gain received from the transformation be-
comes smaller. For example, the average acceptance proba-
bility increased from 62% to 84% when the interval of per-
turbation was only one percent of the allowed domain. Fi-
nally, the perturbation size was set to 5% and the errors of
the algorithms were measures as functions of time. The re-
sults are shown in the left of Figure5.

Note that mutating in the primary sample space improved
the convergence but the benefit of multiple importance sam-
pling is not obvious yet. The reason is that we used the RMS
error, which is not really good at expressing image differ-
ences. For example, if a dark pixel has someσ2 variance,
then it would mean the same RMS error as if a bright pixel
had it. However, this variance is much more noticeable in
the dark pixels. To overcome this problem, a perceptual error
measure was also used6. For instance, according to Weber
law, the human eye is sensitive to relative rather than abso-
lute errors. Thus we computed the relative error in all pixels
and defined the perceptual error as the ratio of those pix-
els where the relative error exceeded a given threshold. The
right of Figure5 has been plotted with this metric, and shows
the superior performance of multiple importance sampling.

7.1. Testing on complex scenes

The proposed method has also been tested on complex
scenes, for example, on the Buddha scene (Figure8 in the
color section) that consists of nearly 300 thousand triangles.
The lighting is especially difficult at the back of the Bud-
dha since it can receive illumination through a reflection of
the mirror, the Buddha itself is highly specular (the RMS
slope in the Cook-Torrance BRDF is 0.05) and we can see
the mirror reflection of the back of the Buddha (these light
paths contain two ideal and one highly specular reflections).
The curved mirror consists of planar parts.

In order to render this scene, the normal bi-directional
path tracing was equipped with the proposed Metropolis
sampler. The average computation time of a single mutation
took 0.2 msec on a Pentium III/1Ghz computer. Figure8 of
the color section has been rendered with only 25 mutations
per pixel on average. Note that when the large step proba-
bility is small, the high correlation of the subsequent light
paths results in “waves” in the image. Increasing the large
step probability thewavesdisappear, but for very high large
step probability, the dot noise becomes more significant at
bright regions. This is due to the fact that large steps cor-
respond to global mutations, thus the process is unable to
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Figure 5: Error curves of the original Metropolis light transport and the new Metropolis sampler included in simple bi-
directional path tracing, using RMS measure (left), and a perceptual error measure (right).

Figure 6: Images rendered without (left) and with (right) multiple importance sampling using 25 mutations per pixel. The large
step probability is 0.5.

explore the space with fine, small steps. The optimal large
step probability is about 0.5.

Figure6 shows the effect of combining large steps with
multiple importance sampling, which is really significant if
the image contains high luminance variations (note the large
difference between the reflected light source and the rest of
the mirrorring wall behind the Buddha). The difference of
bright sections of the two images is negligible, but darker
pixels can greatly benefit from multiple importance sam-
pling.

The proposed method has also been compared with pure
bi-directional path tracing. Figure9 of the color section
shows the same scene rendered with 100 average number of

samples by bi-directional path tracing and the new method,
respectively. The new method provides better results using
the same computational time, especially at difficult parts of
the image.

Figure 7 shows a scene inspired by “disco lights”. The
sphere-like object consists of 80 ideally reflecting and re-
fracting triangles that are lit by 8 color light sources. Note
that 256 mutations per pixel were enough to render the scene
quite accurately.

8. Conclusions

This paper presented a new mutation method for the
Metropolis light transport algorithm. The mutations are
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Figure 7: Disco lights scene rendered with 256 mutations
per pixel.

computed in the primary sample space where other Monte-
Carlo methods obtain the pseudo-random numbers. If im-
portance sampling is used, then this strategy makes the inte-
grand flatter, and increases the average acceptance probabil-
ity and thus reduces the correlation. The other main advan-
tage of this approach is that it does not require sophisticated
techniques and tricks to set parameters. We also proposed
the application of large steps to include independent sam-
ples in the sequence. These large, independent steps have
threefold benefits. They reduce the start-up bias, guarantee
the ergodicity and allow a more sophisticated reuse of ten-
tative samples in the integral quadrature, which is based on
the concepts of multiple importance sampling.

In our approach we made a clear distinction between the
generation of primary samples according to the Metropolis
method and the construction of light paths from them. In
this way, any random walk algorithm can be equipped with
the proposed general Metropolis sampler, just the random
number generation and the scheme of weighting the light
path contributions should be modified.
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plarge = 0:02 plarge = 0:5 plarge = 0:9

Figure 8: Images rendered with 25 mutations per pixel by the proposed algorithm included in bi-directional path tracing, using
multiple importance sampling with different large step probabilities.

bi-directional path tracing new method reference image

Figure 9: Images rendered with 100 samples per pixel by bi-directional path tracing and by the proposed Metropolis method
included in bi-directional path tracing (plarge = 0:5), using the same computation time. The reference image is also shown for
comparison.
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