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Abstract

This paper presents an algorithm for the glossy global illumination
problem, which runs on the Graphics Processing Unit (GPU). In or-
der to meet the architectural limitations of the GPU, we apply ran-
domization in the iteration scheme. Randomization allows to use
that set of the possible light interactions, which can be efficiently
computed by the GPU, and makes it unnecessary to read back the
result to the CPU. Instead of tessellating the surface geometry, the
radiance is stored in texture space, and is updated in each iteration.
The visibility problem is solved by hardware shadow mapping after
hemicube projection. The shooter of the iteration step is selected by
a custom mipmapping scheme, realizing approximate importance
sampling. The variance is further reduced by partial analytic inte-
gration.

1 Introduction

This paper proposes the GPU implementation of a stochastic global
illumination algorithm. Unlike previous approaches, we empha-
size here the application of randomization as a tool to solve gen-
eral problems on the GPU. Randomization, also called Monte Carlo
method, has proven to be very successful to solve high dimensional
integration problems. On the other hand, randomization also allows
to replace a computation by another simpler calculation which gives
back the result of the original computation just in an average case.
In this sense, randomization provides us enormous freedom to sim-
plify or to restructure algorithms. In case of special hardware the
goal of randomization is to trace back the computation to random
steps, which can efficiently be carried out by the GPU hardware.

The paper is organized as follows. In section 2 we review the dif-
ficulties of porting algorithms to the stream processing architecture
of the GPU. Section 3 discusses previous work on the hardware
support for global illumination, and the new algorithm is placed
among the existing methods. Section 4 presents the new method
and its implementation details. Section 6 analyzes its performance,
and finally the paper is closed with conclusions.

2 Porting algorithms to the GPU

When porting an algorithm to the GPU we have to implement three
programs, one for the CPU, one for the vertex shader, and one for
the pixel shader. Vertex and pixel shaders form a stream process-
ing architecture, where CPU feeds the vertex shader, which only
modifies data items. Vertex shader results are passed to fixed inter-
polators that linearly interpolate the values over the pixels of the tri-
angles. The interpolated values are in turn sent to pixel shaders that
can read textures, and can only write its target pixel stored either in
the frame buffer or in the texture memory. Reading back any data to
the CPU destroys pipeline efficiency, thus should be avoided. Meet-
ing all these limitations is the real challenge of GPU programming.
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In the following subsections we consider three particular problems
due to the architectural limitations and their general solutions.

The graphics hardware uses the z-buffer algorithm for visibility
checks. This algorithm processes the geometry (triangles) in an ar-
bitrary order, but the valid visibility information is available only if
the complete geometry has gone through the pipeline. When a point
of a triangle is processed, it is not yet known whether or not this
point is visible. Thus computations involving the visibility function
require two passes. In the first pass the visibility function is com-
puted, then in the second pass the computation can depend on this
valid visibility information. This two pass approach resembles to
shadow map methods [Coombe et al. 2004].

GPU algorithms are data driven, which means that the result can
only be written into the pixel (or texel), which is at the end of the
current processing pipeline. Thus we should know the target pixel
even at the vertex shader where the pixel data will be written to.
Consider the example of ray-shooting, which selects an origin and
shoots a ray into the scene, and finally adds the carried power to that
surface area, which is hit by the ray. Such shooting type algorithm
cannot be implemented by the pixel shader since the location of the
result (i.e. the receiver of the transfer) becomes known after the
calculation, while a pixel shader is allowed to write only to its own
pixel. However, in gathering a ray is shot from the ray origin, and
the radiance of the hit point is transferred to the origin of the ray.
Thus the location where the result should be written is known in
advance, which meets the requirements of the GPU pipeline.

Considering this fact, gathering type global illumination algorithms
may seem to be better for GPU implementation. However, it is
known that shooting type approaches have potentially faster conver-
gence [Sbert 1996; Bekaert 1999], thus — despite to the difficulties
— shooting is still worth implementing on the GPU. We concluded
that due to the temporarily invalid visibility information, computa-
tions based on visibility consist of at least two passes. The problem
of shooting can be solved if in the second pass we set a transforma-
tion that visits potentially all possible result locations, and based on
the visibility information of the previous pass, these result locations
are either updated or left unchanged.

Because of the fixed register set, the amount of data arriving at a
pixel shader is limited, thus many partial results cannot be com-
puted and summed in a single pass. A usual trick to attack this
problem is computing a single term of the sum in each pass, which
is added with a copy image of the target buffer. This copy is mir-
rored at the end of each pass. This technique, which is calledping-
pong buffering, can be used only in special circumstances where
the number of added terms is rather limited, since the number of
the required passes is equal to the number of terms to be summed.

This problem can be solved by Monte Carlo summation. The sum is
approximated by a randomly selected term, which is divided by the
selection probability. Thus the approximation can be obtained in a
single pass no matter how many terms the sum has. The randomiza-
tion of the summation introduces some random noise in the result,
which can be eliminated by averaging the temporary results. This
averaging, on the other hand, can be very efficiently implemented
by the ping-pong technique. The previous result is read from one
of the ping-pong buffer, is averaged with the actual result, and the
result is written to the other ping-pong buffer.



Monte Carlo methods have been successfully applied to solve
global illumination problems since they can efficiently approximate
high dimensional integrals inherent in global illumination [Bekaert
1999; Keller 1998]. Note, however, that now randomization has a
different objective. Randomization is regarded as a technique that
can substitute a complex operation (summation or integration) by
a much simpler technique, which can be executed by the available
hardware.

3 Global illumination with hardware sup-
port

Global illumination algorithms aim at the solution of the rendering
equation

L(~x,ω) = E(~x,ω)+R(~x,ω),

which expresses the radianceL(~x,ω) of point~x at directionω as
a sum of emissionE and reflectionR of the radiances of all points
that are visible from point~x. The reflection of the radiance of visible
points is expressed by an integral operator

(T fr L) =
∫

S

L(~y,ω~y→~x) · fr (ω~y→~x,~x,ω) ·G(~x,~y) dy, (1)

which is also called as thelight transport operator[Kajiya 1986].
In this equationS is the set of surface points,fr is the BRDF and

G(~x,~y) = v(~x,~y) · cosθ~x ·cosθ~y

|~x−~y|2

is thegeometric factor, wherev(~x,~y) is the mutual visibility indica-
tor, which is 1 if points~x and~y are visible from each other and zero
otherwise,θ~x andθ~y are the angles between the surface normals and
directionω~y→~x that is between~x and~y.

The solution of the rendering equation requires general purpose in-
structions and is thus usually computed on the CPU [Dutre et al.
2003]. Our goal is to take advantage of the huge computation power
of the GPU for the solution of the rendering equation. In order to do
so, we should transform the algorithm according to the capabilities
of the GPU.

The CPU-based solution algorithms can be classified as random
walk [Kajiya 1986] and iteration techniques. The GPU support of
random walk algorithms has been examined in [Purcell et al. 2003].
Since iteration algorithms are conceptually closer to local illumina-
tion, which is originally supported by GPUs, we believe that itera-
tion algorithms are better candidates for GPU implementation.

Iteration techniques are based on the fact that the solution of the
rendering equation is the fixed point of the following iteration
scheme:

Rm = T fr Lm−1 = T fr (E +Rm−1).

If this scheme is convergent, then the solution can be obtained as a
limiting value:

R(~x,ω) = lim
m→∞

Rm(~x,ω).

Iteration works with the complete radiance function, whose tem-
porary version should be represented somehow. The classical ap-
proach is thefinite-element method, which approximates the ra-
diance function in a function series form. In the simplest dif-
fuse case we decompose the surface to small elementary surfaces
A(1), . . . ,A(n) and apply a piece-wise constant approximation, thus
the reflected radiance function is represented by the reflected radi-
ance of these patches, that is byR(1), . . . ,R(n). In the glossy case

the radiance is also a function of the direction, which may be han-
dled by applying a similar finite element decomposition in the di-
rectional domain [Sillion and Puech 1994], but this approach would
increase the storage requirements considerably. Fortunately, ap-
plying randomization, we can solve the glossy global illumination
problem without introducing any finite elements in the directional
domain [Szirmay-Kalos 1999].

If these elementary surfaces are small, we can consider just
a single point of them in the algorithms, while assuming that
the properties of other surface points are similar. Surface
properties, such as the BRDF and the emission can be given

by directional functionsf (1)
r (ω in,ωout), . . . , f (n)

r (ω in,ωout), and
E(1)(ωout), . . . ,E(n)(ωout), in each positional finite element. These
directional functions can be defined by material properties, such as
the diffuse and specular albedos and the shininess. We shall use a
physically plausible diffuse-specular model [Neumann et al. 1999]
defined by the diffuse and specular albedos and the shininess, and
assume that the lights are diffuse, but other material and light mod-
els could also be used in the proposed method.

Iteration simultaneously computes the interaction between all sur-
face elements, which has quadratic complexity in terms of the num-
ber of finite elements, and is hard to implement on the GPU. This
problem can be attacked by special iteration techniques, such as
Southwell iteration (also called progressive radiosity), hierarchical
radiosity, or by randomization. Southwell iteration computes the
interaction of the element having the highest unshot radiosity and
all other surface elements [Cohen et al. 1988]. It is quite simple to
implement but has also quadratic complexity [Szirmay-Kalos and
Márton 1995]. Methods supporting progressive radiosity with the
graphics hardware is as old as the method itself. The form factors
between the shooter and all other patches can be computed with the
hemicube method that identifies the visible patches by the z-buffer
hardware [Cohen and Greenberg 1985].

The quadratic complexity can be reduced by hierarchical [Aup-
perle and Hanrahan 1993] and Monte Carlo [Shirley 1991; Neu-
mann 1995] approaches. The limited capabilities of the hardware
seem not to be appropriate for the implementation of demanding
hierarchical approaches. Monte Carlo techniques, on the other
hand, can greatly benefit from the hardware. Stochastic perspective
ray bundles use the same elementary step as progressive radiosity
[Szirmay-Kalos et al. 2003], while parallel ray-bundles [Neumann
1995] can be traced by depth peeling [Szirmay-Kalos and Purgath-
ofer 1998] or can be made appropriate for normal z-buffer render-
ing by applying further randomization [Martinez et al. 2002]. All of
these early attempts to use the hardware suffered from the limitation
of the fixed pipeline, which did not allow the complete algorithm
to be executed on the graphics card. Read-backs transferring data
to the CPU, however, significantly reduced the speed. An excep-
tion is the instant radiosity [Keller 1997], which computed the last
eye-step of a random-walk algorithm using the standard graphics
hardware, thus it could eliminate the read-backs.

The emergence of programmable graphics hardware has made it
possible to implement the complete algorithm without the perfor-
mance penalty of read-backs. CPU algorithms usually decom-
pose general surfaces to triangular patches. However, in GPU ap-
proaches this is not feasible since GPU processes patches indepen-
dently thus the computation of the interdependence of patch data is
difficult. Instead, the radiance function can be stored in a texture
[Bastos et al. 1997; Nielsen and Christensen 2002]. An elementary
surface areaA(i) is the surface which is mapped onto texeli. Full
matrix radiosity [Carr et al. 2003], progressive refinement [Nielsen
and Christensen 2002], substructuring [Coombe et al. 2004], and
final gathering with parallel ray bundles [Hachisuka 2004] have



already been successfully implemented on the graphics hardware.
However, as these algorithms have quadratic complexity they could
achieve interactive frame rates on only simple models represented
by at most100×100texture resolution. Due to the complicated op-
erations, the CPU implementation has turned out to be not slower
than the GPU algorithm in many applications [Carr et al. 2003].

Unlike these previous methods, this paper proposes the implemen-
tation of a Monte Carlo global illumination algorithm on the graph-
ics hardware. The formal basis of such approaches is the stochastic
iteration, which was originally proposed for the solution of the lin-
ear equations [Neumann 1995; Sbert 1996; Bekaert 1999], then ex-
tended for the solution of integral equations [Szirmay-Kalos 1999].
Stochastic iteration means that in the iteration scheme a random
transport operatorT ∗

fr
is used instead of the light-transport opera-

tor T fr . The random transport operator has to give back the light-
transport operator in the expected case:

Rm = T ∗
fr (E +Rm−1), E[T ∗

fr L] = T fr L.

Note that such an iteration scheme does not converge, but the it-
erated values will fluctuate around the real solution. To make the
sequence converge, we obtain an image estimate at each iteration
step, and compute the final result as the average of these image es-
timates:

C = M E +
1
m
·

m

∑
k=1

M Rk,

whereM is the measuring operator computing the image seen from
the camera from the actual radiance distribution. It means that the
implementation of a stochastic iteration algorithm requires the stor-
age of the evolving image (a valueC for each pixel), and the tem-
porary version of the reflected radiance functionRk(ω). The com-
plexity of the representation of this function depends on the prop-
erties of the random transport operator, and its simplification is an
important criterion to find a good randomization.

The core of all stochastic iteration algorithms is the definition of the
random transport operator. We prefer those random operators, that
can be efficiently computed on the GPU, introduce small variance,
and does not require the complete storage of the radiance function
for all points and directions.

In this paper we propose the implementation of the random
hemicube shooting (perspective ray bundles) [Szirmay-Kalos et al.
2003] on the GPU. Unlike the CPU based method, we store both
the actual irradiance and the accumulated radiance for the camera
in textures, and minimize the data storage requirements. During
the porting of the algorithm, we had to solve the problems of tex-
ture based non-diffuse radiance representation and importance sam-
pling. We significantly simplified the data structures as needed by
the GPU and stored the temporary reflected radiance and the evolv-
ing image in floating point textures. Note that although the new
method solves the non-diffuse global illumination problem, thanks
to randomization, it still uses two small RGBA textures. The GPU
algorithm and the radiance representation are practically indepen-
dent of the patch decomposition, surfaces describe only the geom-
etry. We may call this approach aspatchless rendering, since hav-
ing detected the visibility between two points, all computations are
done on texels independently of the surfaces. It allows us to work
with the original geometry, no patch subdivision is necessary, but
the finite element representation of the radiance can be high. We
consider this as one of the main novelties of the method comparing
to previous CPU based stochastic iteration algorithms.

On the other hand, with respect to previous GPU based radiosity
algorithms, the main novelty is the introduction of randomization.

Randomization allowed the rendering of non-diffuse scenes with-
out any increase in required texture space. On the other hand, we
can benefit the sub-quadratic complexity of Monte Carlo methods,
which makes randomized approaches a definite winner for more
complex scenes. Moreover, randomization can be regarded as a
general tool to trace back the steps of general algorithms to those,
which can be executed by the GPU.

4 The new GPU based global illumination
algorithm

According to the rendering equation, the reflected radiance can be
obtained by evaluating a surface integral. In a GPU algorithm, the
surface is decomposed to small patches corresponding texels of the
texture map. Let us first assume that the resolution of this texture
map is high enough to make all elementary surfaces small, and thus
we can check the mutual visibility of two elementary surfaces by
inspecting only their centers. In this case the update of the reflected
radiance representation in a single iteration can be approximated in
the following way:

R(i)
m (ω) =

1

A(i) ·
∫

A(i)

∫

S

Lm−1(~y,ω~y→~x) · f (i)
r (ω~y→~x,ω) ·G(~x,~y) dydx≈

n

∑
j=1

L( j)
m−1(ω~y j→~xi

) · f (i)
r (ω~y j→~xi

,ω) ·G(~y j ,~xi) ·A( j), (2)

where~y j and~xi are the centers of elementary surfacesA( j) andA(i),
respectively.

In order to efficiently detect visibility between points~y j and~xi , we
run a GPU algorithm that is quite similar to depth buffer shadow
methods. First a depth image is computed placing the camera at~y j
and associating the pixels with the cells of a discretized hemicube.
Then in the second pass, the center of every surface elementA(i) is
checked whether or not this surface element is farther from~y j than
the closest surface projecting onto the same pixel as the center of
A(i). If a surface element (i.e. a texel) turns out to be visible, then
the contribution from the shooter is added, otherwise this contribu-
tion is zero.

Equation 2 — which has to be computed in every iteration — con-
tains a sum for every finite elementi and for each iteration. This
sum is estimated randomly since the random estimator completely
eliminates summation that would pose problems to the GPU. A sur-
face elementA( j) is selected with probabilityp j , and~y j is set to its
center. This randomization allows to compute the interaction be-
tween shooter surface elementA( j) and all other receiver surface
elementsA(i), instead of considering all shooters and receivers si-
multaneously. Having selected shooterA( j) and its center point~y j ,
the radiance of this point is sent to all those surface elements that
are visible from here. The Monte Carlo estimate of the reflected
radiance of finite elementA(i) after this transfer is

R(i)
m (ω) =

L( j)
m−1(ω

(i)
m ) · f (i)

r (ω(i)
m ,ω) ·G(i)

m

p j
, (3)

where directionω(i)
m points from the randomly selected shooter~y j

of iterationm to point~xi , andGm is the geometry factor between
them.

Due to the possible glossy reflections, the reflected radiance de-
pends on viewing directionω , thus its representation would require



finite element decomposition in the directional domain as well.
Note, however, that this dependence is caused by the BRDF, which
makes it possible to store the irradiance by a single value. The it-
eration algorithm stores theactual irradiance texturecaused by the
last iteration step:

I (i)m =
L( j)

m−1(ω
(i)
m ) ·Gm

p j
. (4)

Storing the shooter location of the previous iteration~y j in a global
(uniform) parameter, the reflected radiance in an arbitrary direction
ω can be obtained as

R(i)
m (ω) = I (i)m · f (i)

r (ω(i)
m ,ω). (5)

The final image will be the average of the estimates computed for
the eye direction. To obtain this average we compute the reflected
radiance for the eye direction and add this result toaccumulation
texturevalueC:

C(i)
m = C(i)

m−1 + I (i)m · f (i)
r (ω(i)

m ,ωeye). (6)

When the final result is displayed, we render the scene with the
texture of valuesC divided by the number of iterations.

In order to realize this random transport operator, two tasks need
to be solved, including the random selection of a texel identifying
point~y j , and the update of the irradiance at those texels which cor-
respond to point~xi visible from~y j while also computing the contri-
bution of this transfer onto the image.

4.1 Random texel selection

The randomization of the iteration introduces some variance in each
step, which should be minimized in order to get an accurate result
quickly. According to importance sampling, the introduced vari-
ance can be reduced with a selection probability that is proportional
to the integrand. Unfortunately, this is just approximately possible,
and the selection probability is set proportional to the current power
of the selected texel. Since the reflected radiance can be due to only
a transfer from the previous shooter, the power can be expressed
from the irradiance:

Φ( j)
m =

∫

Ω

∫

A( j)

Lm(~x,ω) ·cosθ dxdω =

(E( j) ·π + I ( j)
m ·a( j)(ω( j)

m )) ·A( j),

wherea( j)(ω in) =
∫
Ω

f ( j)
r (ω in,ω) ·cosθ dω is thealbedoof surface

elementA( j).

If the light is transferred on several wavelengths simultaneously, the
luminance of the radiated power should be used. Thus the selection
probability of elementary surfacej is:

p j =
L (Φ( j))

Φ
, Φ = ∑

k

L (Φk),

whereL is the luminance of a spectrum represented by red, green
and blue components. Substituting this selection probability into
equation 4, we obtain:

I (i)m = Φ · E( j) + I ( j)
m−1 · f ( j)(ω( j)

m−1,ω
(i)
m )

L (E( j) ·π + I ( j)
m−1 ·a( j)(ω( j)

m−1))
·Gm. (7)

The random selection according top j can be supported by a
mipmappingscheme. Mipmapping has originally been proposed
for texture filtering. Later it was also used to find the maximum
value in an image [Coombe et al. 2004]. In our approach, however,
we use mipmapping to sample randomly, proportional to stored
valueL (Φ( j)). A mipmap can be imagined as a quadtree, which
allows the selection of a texel inlog2R steps, whereR is the reso-
lution of the texture. Each texel is the sum of the luminance of four
corresponding texels on a lower level. The top level of this hierar-
chy has only one texel, which contains the average of the luminance
of all elementary texels. Both generation and sampling require the
rendering of a textured rectangle (also called a full screen quad) by
log2R times.

The generated mipmap is used to sample a texel with a probability
that is proportional to its luminance. First the luminance of the top
level texel is retrieved from a texture and is multiplied by a random
number uniformly distributed in the unit interval. Then the next
mipmap level is retrieved, and the four texels corresponding to the
upper level texel is obtained. The luminance of the four pixels are
summed, the running sum (denoted bycmax in the program below)
is compared to valuer obtained on the higher level. When the run-
ning sum gets larger than the selection value from the higher level,
the summing is stopped and the actual value is selected. A new
selection value is obtained as the difference of the previous value
and the luminance of all texels before the found texel (r-cmin).
Then the same procedure is repeated in the next pass on the lower
mipmap levels. This procedure terminates at a leaf texel with a
probability that is proportional to its luminance.

The pixel shader of a pass of the mipmap based sampling, which
selects according to random valuer passed from the upper level
and originally set randomly with uniform distribution in[0,Φ]:

float cmin = 0, cmax = tex2D(texture, uv);

if(cmax >= r) {

c = float3(r-cmin, uv.x, uv.y);

} else {

cmin = cmax;

float2 uv1 = float2(uv.x-rr, uv.y);

cmax += tex2D(texture, uv1);

if(cmax >= r) {

c = float3(r-cmin, uv1.x, uv1.y);

} else {

cmin = cmax;

uv1 = float2(uv.x, uv.y-rr);

cmax += tex2D(texture, uv1);

if(cmax >= r) {

c = float3(r-cmin, uv1.x, uv1.y);

} else {

cmin = cmax;

uv1 = float2(uv.x-rr, uv.y-rr);

c = float3(r-cmin, uv1.x, uv1.y);

}

}

}

return c;

Therr parameter is the distance between two neighboring pixels in
texture address space.

4.2 Update of the radiance texture

The points visible from~y can be found by placing a hemicube
around~y, and then using the z-buffer algorithm to identify the visi-
ble patches. Since it turns out just at the end, i.e. having processed
all patches by the z-buffer algorithm, which points are really vis-



ible, the application of the random transfer operator requires two
passes.

4.2.1 First pass: construction of the depth map

In the first pass the center and the base of the hemicube are set to
~y and to the surface at~y, respectively, then the scene is rendered
computing thez coordinate of the visible points. These values are
written into a texture, called thedepth map. We also compute a
tolerance value as the absolute value of the dot product between the
surface normal and the view direction, so we can identify the faces
that are close to being viewed at grazing angles from the shooter’s
point of view.

Note that this approach differs from earlier methods [Nielsen and
Christensen 2002; Coombe et al. 2004] creating a map of patch
indices and checking whether a patch associated with the pixel is
the same as the id stored in the map. Working with depth values
instead of patch indices allows tolerance to be incorporated, which
can eliminate dot artifacts of previous methods.

4.2.2 Second pass: irradiance update

In the second pass we render into the rectangle of the irradiance
texture. It means that the pixel shader visits each texel, and updates
the stored actual irradiance (I) and the accumulating radiance (C)
according to equations 4 and 6.

Thevertex shaderis set to map a point onto the corresponding texel
having coordinatestexx:

OUT.hpos.x = 2 * IN.texx.x - 1;

OUT.hpos.y = 1 - 2 * IN.texx.y;

OUT.hpos.z = 0;

OUT.hpos.w = 1;

OUT.texx = IN.texx;

Note that the first instruction not only makes the vertex coordinate
equal to the texture coordinate, but also applies a transformation.
This transformation is necessary because the vertex screen coordi-
nates must be in [-1, 1], while the texture coordinates are expected
in [0,1]. Direct3D has a texture space which defines the upper left
corner as(0,0) and the lower right corner as(1,1), so we need to
flip y coordinates.

The vertex shader also transforms the input vertex to camera space
(x), as well as its normal vectorxnorm to compute radiance transfer,
determines homogeneous coordinatesvch for the location of the
point in the depth map.

x = mul(position, modelview).xyz;

xnorm = mul(xnorm, modelviewIT).xyz;

viscoord = mul(position, modelviewproj);

In equation 4, the geometric factor depends on the receiver point,
thus its accurate evaluation could be implemented by thepixel
shader:

float3 ytox = normalize(x); // dir y to x

float xydist2 = dot(x, x); // |x - y|^2

float cthetax = dot(xnorm, -ytox);

if (cthetax < 0) costhetax = 0;

float3 ynorm(0, 0, 1);

float cthetay = ytox.z;

if (cthetay < 0) costhetay = 0;

float G = cthetax * cthetay / xydist2;

Note that we took advantage of the fact that~y is the eye position
of the camera, which is transformed to the origo by themodelview
transform, and the normal vector at this point is transformed to axis
z.

When a texel of the current radiance map and of the accumulating
radiance map is shaded, it is checked whether or not the center of
the surface corresponding this texel is visible from the shooter by
comparing the depth values stored in the visibility map. We have to
apply a tolerance based on the cosine of the viewing angle in order
to avoid point artifacts. This tolerance is stored in the green channel
of the visibility map. The pixel shader code responsible for convert-
ing homogeneous coordinates (vch) to Cartesian coordinates (vcc)
and computing the visibility indicator is:

float3 vcc = vch.xyz / vch.w; // Cartesian

vcc.x = (vcc.x + 1) / 2; // Texture space

vcc.y = (1 - vcc.y) / 2;

float2 depth = tex2D(depthmap, vcc).rg;

float vis = (abs(depth.r - vcc.z) <

(eps1 - eps2 * depth.g));

To obtain the radiance transfer from shooter~y to the processed point
~x, first the radiance of shooter~y is calculated from its irradiance
stored in irradiance mapirradmap according to its BRDF, and its
emission stored inemissmap. Shooter’s texture coordinatestexy
and previous shooteryprev are passed as uniform parameters:

float3 Iy = tex2D(irradmap, texy);

float3 Ey = tex2D(emissmap, texy);

float3 yin = normalize(yprev); // yprev - y

float3 Ly = Ey +

Iy * BRDF(texy, yin, ynorm, ytox);

The BRDF function reads the BRDF parameters from texture map
brdfmap according to texture coordinatestexy and computes a
simple streched-Phong BRDF [Neumann et al. 1999].

The new irradiance at~x is obtained from the radiance at~y multiply-
ing it with visibility vis and geometric factorG computed before,
and divided by probabilityp passed as a uniform parameter. The
emission and surface area of this texel are read from texture map
emissmap. The luminance of the reflected power (lumPowx) at~x
is also computed to allow importance sampling in the subsequent
iteration step, and stored in the alpha channel of the irradiance. Ad-
ditionally, the contribution to the eye is also determined and the
increase value is output inC.

float3 Ix = Ly * G * vis / p;

float4 Ex = tex2D(emissmap, texx);

float Ax = Ex.a; // surface area

float3 alb = Albedo(texx); // albedo of x

float3 em = float(1, 1, 1) * pi;

float lumPowx = (dot(E, em) + dot(I, alb))/3;

OUT.I = float4(Ix, lumPowx);

float3 xtoe = normalize(eye - x);

float3 Lx = Ex +

Ix * BRDF(texx, ytox, xnorm, xtoe);

OUT.C = C + Lx;

This pixel shader outputs two values, including the irradianceI and
accumulating radiance toward the eyeC, thus it requires the multi-
ple render target option.

5 Variance reduction

Recall that we applied a finite element decomposition over the posi-
tional variation of the irradiance function. The decomposition was
so fine that we could test the visibility for a single point of each



finite element, thus we could eliminate all summations that would
pose problems to the GPU. However, using the same level of sur-
face tessellation for both visibility calculations and irradiance rep-
resentation is not very effective since visibility information changes
much more quickly than the relatively smoother irradiance func-
tion. This approach requires large textures, and small finite ele-
ments make it possible that two finite element centers get too close
to each other, which is responsible for corner spikes. This problem
can be solved if we use denser samples for visibility computations
than for irradiance representation. It corresponds to merging differ-
ent terms of equation 2 that correspond to elementary surfaces close
to each other and therefore have similar radiance (a term is in fact
a texel that represents a small surface area). Merging neighboring
texels is a texture filtering, which replaces the texture by a higher
mipmap level.

Note that unlike in classical radiosity algorithms and in [Coombe
et al. 2004], we do not rely on the patch structure when the corre-
spondence between the two levels of details are defined. The lower
resolution texture can be imagined as a filtered version on a higher
level in a mipmap structure. When this filtering is implemented,
we have to be careful not to combine two texels that would corre-
spond to two different surfaces. This problem is solved by looking
up another texture generated during the preprocessing phase. This
texture stores a patch id for each texels, and can be used to detect
whether or not two texel values can be combined.

When combining several texels, the resulting radiance is the aver-
age of the radiance of individual texels, and the resulting geometry
factor is the sum of the individual geometry factors. The sum (or
the integral) of the geometry factors can be obtained using the point
to disc approximation. Let us suppose that the merged texels corre-
spond to surface areaA with center~y j . If the radiance of the texels
are similar and their average isL̃, then

∫

A

L(~y,ω~y→~xi
) · f (i)

r (ω~y→~xi
,ω) ·G(~xi ,~y) dy≈

L̃(ω~y j→~xi
) · f (i)

r (ω~y j→~xi
,ω) ·v(~y j ,~xi) ·

cosθ~y j
·cosθ~xi

|~y j −~xi |2 +A/π
·A. (8)

Note that this merging can significantly reduce the variation of the
terms since replacing elementary surfacesA( j) by larger surfacesA,
the center~y j of the larger surface will be farther from receivers~xi .
On the other hand, the disc to point form factor approximation adds
anA/π term to the denumerator, which cannot be as small as in the
original approach.

6 Implementation results and further im-
provements

The proposed method has been implemented on an NV6800GT
graphics card in DirectX/HLSL environment. The implementation
has been tested with the Cornell box scene and we concluded that
a single iteration requires less than 20 msec for a few hundred ver-
tices and for128× 128 resolution radiance maps, while keeping
the depth maps at256×256(the algorithm is pixel shader limited).
Using64×64resolution radiance maps introduced a minor amount
of shadow bleeding, but increased iteration speed by approximately
40%. Since we can expect converged images after40 – 80 itera-
tions for normal scenes, this corresponds to0.5 – 1 frames per sec-
ond, without exploiting frame-to-frame coherence. The algorithm
(depending on the resolution) uses several render-to-surface objects

and does one iteration in22 – 30 passes. With faster, hardware op-
timized shadow calculation we should be able reduce the number
of passes by 4 as well. In order to eliminate flickering, we should
use the same random number generator in all frames. On the other
hand, as in all iterative approaches, frame to frame coherence can
be easily exploited. In case of moving objects, on the other hand,
we can take the previous solution as a good guess to start the itera-
tion. This trick not only improves accuracy, but also makes the error
of subsequent steps highly correlated, which also helps eliminating
flickering.

Figure 2: Specular objects in a diffuse room rendered with the pro-
posed method in 9 sec on an Nvidia 6800GT graphics card.

7 Conclusions

This paper presented a stochastic glossy global illumination algo-
rithm running entirely on the GPU. In order to port a global illu-
mination algorithm — which should follow the interdependence of
the patch radiances — onto the graphics hardware — which usually
assumes patch independence — we used randomization. Random-
ization has turned out to be an efficient tool to modify algorithms
to meet the capabilities of the underlying hardware. The final algo-
rithm is fast, it can render moderately complex scenes interactively,
and thus is an appropriate candidate to include global illumination
effects in games. On the other hand, the algorithm is relatively sim-
ple and easy to implement.
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Figure 1: Image rendered with partial analytic integration and multiple importance sampling using 100 iteration. All objects are mapped to a
single texture map of resolution128×128. The rendering times are measured on an Nvidia 6800GT graphics card.
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