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Abstract detect, for example, the power reaching the eye through a
pixel.

This paper presents a method that can replace the small The radiance function can be obtained by solving the

and medium size lightsources by their effect in non-diffuserendering equatiofil 0] that has the following form:

global illumination algorithms. Incoming first-shot is R

a generalization of a preprocessing technique called the L=L+TL (@)

first-shot that was developed for speeding up global dif-| this integral equation, operatdr describes the light

fuse radiosity algorithms. Alternatively, it can also be transport

approached as a generalization of the direct-lightsource

computation involved in gathering type methods. In or- 1 (g ¢y) = /L(h(X,—w’),m’) (o, %, w) - cosh’ ey

der to reduce the prohibitive memory requirements of the A

original first-shot when it is applied to non-diffuse scenes (3)

in a direct manner, the proposed new method computegyherel (%,w) andL&(%,w) are the radiance and emission

and stores only the incoming radiance generated by theyf the surface in poirk at directionw, Q is the directional

lightsources and the reflected radiance is obtained fromsphereh(x, oY) is the visibility function defining the point

the incoming radiance on the fly taking into account thethat is visible from poinf at directionoy, f;(¥,%,w) is

local BRDF. Since the radiance function of the reflection the bi-directional reflection/refraction function, aftlis

is smoother and flatter than the original lightsource func-the angle between the surface normal and directios

tion, this replacement makes the integrand of the renderingfigure 1).

equation have significantly smaller variation, which can

speed up global illumination algorithms. The paper also

discusses how the first-shot technique can be built into a

stochastic iteration algorithm using ray-bundles, and pro-

vides run-time statistics.
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1 Introduction

Global illumination algorithms aim at obtaining the power
detected by a collection of measuring devices. The mea-
surement process is characterized by the following equa- Figure 1: Geometry of the rendering equation
tion
Let us substitute functiohin the right side by the com-
//L(y’ w)-cosB-We(Y,w) dy dw=ML, (1) plete right side (which equals tg recursively. If the inte-
Lo gral operator is a contraction, this provides the solution in

the form of an infinite series:
whereL (¥,w) is theradiance 6 is the angle between the e e e .
surface normal and directio andWe¢(y,w) is thesen- L=+ TL=L+T (54T =
sitivity of the measuring device. A measuring device can L+ T (L4 T (L8 +..)...). (4)

*This work has been supported by the National Scientific ResearchT hus the measured power is
Fund (OTKA ref.No.: T029135), the Spanish-Hungarian Fund (ref.No.:
E9) and the Spanish-Austrian Action Fund. ML=M (L®+T (L +T (L®+...)...). (5)



Random-walk [20] and stochastic iteration [21] algo- is flatter. For example, we can replace the emissions of the
rithms evaluate the integrals of this formula by Monte- lightsources by their first reflection, which leads us to the
Carlo quadrature. Monte-Carlo integration is justified by core idea of the first-shot methods.
the facts that its complexity does not grow with the di-
mension of the domain of the integration and it does not .. .
accumulate the error. 2 The basic idea of first-shot

The integrals providing the solution of the rendering

equation have the following form: First-shotis a method that shoots the power of the small

_ lightsources onto other surfaces, increase the emission of
TLE+T (L +..)..)=T(L°+L"Y = the other surfaces by the reflection, then removes the orig-
inal lightsources from the scene.

/(LE+ L) - f, -cost do
2 A< P2 ‘
whereL! is the indirect illumination computed by the sub- b O

sequent integration. Monte-Carlo estimates are accurate if _
the integrand 5

L' (o) = (L®+ L") - f, - cosd/

TL®

TN\

Figure 2: First-shot technique

have high variance. Let us examine this statement for-
mally. Suppose that this integral is evaluated by Monte-

Carlo quadrature, thus it is converted to an expected value,
which is estimated by an average. Assume that a random
directionw is sampled from a probability densify().

The integral to be computed is:

is “flat”, i.e. close to constant, otherwise the estimates H
Lep

Formally, the unknown radiandeis decomposed into

coy L () two terms:
/L () dw’z/ o) -p(w) dod = L=LeP4L"P ©)
o o whereL®Pis the emission of the small area and point light-
L' (o . 1 N L™ (oY sourcesl."P is the emission of the larger area lightsources
E { (o } L= N Zi (o (6)  and the reflected radiance. Substituting this into the ren-

R dering equation we have:
EstimatorL" is also a random variable whose standard de- . N . . N
viation isa/v/N whereo? is LEPHLP = L8+ T (L°P+L"P). 9)

Expressind."P we obtain:

2
L™ (o r / /
o? :/ ( p(((,d)) —/L (W) dw) -p(w) dw'.  (7) L"P = (L8~ LeP4+ T LeP) + T L"P, (10)
Q Q

Introducing the new lightsource term

This standard deviation is small lif (') /p(«w') is close
to the value of the integrglL" (w) dw everywhere in the L® =L®—L®P4+ T L®P (11)
Q

domain. which just replaces the point lightsourceés$R) by their
One way of reducing the variance of the Monte-Carlo single reflection T LeP), the equation foL™P is similar to
integration is the application of some formiofportance  the original rendering equation:

sampling[17], which means thap(«) mimics the inte-
grandL'(w') to makel' («w)/p(w¥) approximately con- L"P=L*4+TL"P. (12)
stant. Unfortunately, the integrand of the rendering equa-

tion is not available explicitely, thus the probability density Note that when this equation is solved, integrand

is usually based only on the local BRDFs [9, 11] —i.e. it L™ (o) = (L® + L") - f, - cosd/
mimics f; - cosB’ instead ofL®+ L") - f; - cosB’, which can
be quite inaccurate. is flatter than the original integrand.

Another possibility is a different formulation of the Summarizing, first-shot computes the direct illumina-
global illumination problem as an integral, where the inte- tion caused by the small lightsources, then removes these
grand is significantly flatter. Since the problematic part is lightsources from the scene during global illumination cal-
the incoming radiance which stems both directly and indi- culation, and adds them again at the end of the computa-
rectly from the emission of the lightsources, we aim at re-tion. First shot is indispensable for all global methods and
placing the lightsource term by a different function which for all gathering type local methods.



The reflection of the small lightsources can be computed nor storage but is slower than the previous methods
in a preprocessing phase of the global illumination algo- using finite-element tessellation.
rithm, or simultaneously with the global illumination al-
gorithm when it is needed. Furthermore, it is also possible ~ This paper discusses the incoming first-shot method and
to do some parts of the calculation in the preprocessingts application in a stochastic iteration algorithm.
phase while completing the computation on-the-fly with

the global illumination algorithm. . . .
We can consider the following alternatives: 3 Incomlng first-shot  of pomt

1. Classical first-shot The reflected radiance is com- |Ight-SOUI’C€S
puted completely in the preprocessing phase. Th'SSuppose that the scene contdip®int lightsources at lo-

method [6] works well in the radiosity setting, since ) ; .
in this case, the representation of the reflected ra—Catlonsyl""y' with powers®y, ..., @, respectively, then

. ! ' o their reflection at poing is:
diance requires a diffuse “emission” in each patch,
thus the memory overhead of the first-shot is just one | o V(D)
variable per patch. However, in non-diffuse scenes (T L°P)(X,w) = § ———>=2 - f(wf,%, w) - cosdi, (13)
the classical first-shot has prohibitive memory re- 5 4% =X

quirements, since even if the original light-sources , o , o
are diffuse, their reflection may have general direc-Wherea is the direction of lightsourcg 8 is the angle

tional function, which requires the representation of P&tweenw and the surface normal, ang;, X) indicates
the complete reflected, non-diffuse radiance function.the mutual visibility ok andy;. Suppose that the patch un-
If the directional variation of the radiance is repre- d€r consideration is patghand its area ig;. The average

sented byn basis functions (i.en is the number of ~ reflected radiance is:
small solid angles in which the radiance can be sup- 1
posed to be constant) in each patch, then the method(T L*%)j(®) = (T L°F)j(w) = ™ '/(T L®P) (%, w) dX =
requiresn new variables for each patch. VA

2. Diffuse first-shat The BRDF, the light-transport op- |4
erator, and the reflected radiance are decomposed into Z v
diffuse and non-diffuse components and the previ- =17
ous first-shot is applied only to the diffuse reflected
radiance. This method can be used in those finite-T0 compute the reflection of a lightsource at a point, the
element, non-diffuse global illumination algorithms Visibility of the lightsource from the point must be de-

which can make a distinction between the first andtermined. We can usshadow rag evaluated by ray-
the other bounces of the light. shooting, but this is rather slow. Another alternative is

to exploit the image synthesis hardware in the following

3. Incoming first-shot The incoming radiance is com- way. The eye is put at the lightsource and the window is

puted in the preprocessing phase and the reflected radefined as one of the faces of a cube placed around the

diance is obtained from the incoming radiance on theeye. Rendering the images for each faces using constant

fly. Since the surfaces can also be non-diffuse, theshading and using the index of the patches as color values,

incoming radiance received by the patches from eactthe visible areas of the patches from the lightsource can be

point lightsource should be stored (this requirag-  determined.

ditional variables per patch, whetds the number

of point samples of the lightsources) [22]. The sec- A

ondary, non-diffuse emission to a direction is com-

puted from these irradiances. The method is feasible

if I is small, which is the case if the scene contains

a few point lightsources and small area lightsources

whose contribution can be accurately evaluated.

CDi -v(yi,X)

—_ V7, . /
) p—— fr(of,%, ) -cosB dX.  (14)
j

L

4. On-the-fly direct lightsource computationEvery-
thing is done simultaneously to the global illumina-
tion algorithm. This happens in gathering type ran-
dom walk algorithms, for instance in path tracing, _
when at each hit point shadow rays are traced towards win
the lightsources and the direct reflection of the visi-
ble lightsources is added to the radiance of the hitFigure 3: Computation of the lightsource visibility by
point. This approach requires neither preprocessinghardware

point f
lightsource

|
NG
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The integral in equation (14) can also be evaluated orthe reflected radiancd L®P);(w) is needed at poirk of
the six window surfacesW) that form a cube around patchj, this is computed on the fly from the stored scalar
the lightsource. Note that this is similar to the famous parameter;;, from the directions pointing frorx to the
hemicube approach of the diffuse radiosity problem [8]. In lightsources and from the power of the lightsources:
fact, first-shot requires the vertex-patch form factors that
can be computed by the hemicube. In this section, we re- (T LeP); @i -y ). 17)
derive the basic formulae to show that they can also be Zi :
used in cases when the reflection is non-diffuse.

To find formal expressions, let us express the solid an-
gle dQp, in which a differential surface aredX is seen
through pixel aredp, both from the surface area and from
the pixel area:

4 Small area light-sources

Now let us discuss the computation of a single reflection of
the light coming from a small area lightsourgsef emis-

dX-cos8]  dp-cosh, 15 sionL&(y,w) to a pointX. The reflection at poirkis
Vi—%2 -2 (T L) (X, w) =

wheref, is the angle between direction pointingdérom o . o

¥ and the normal of the window (figure 3). The distance /Le(h(x’,—w),w) - fr(w,X,w) -cosd’ dw =
|Vi — P| between pixel poing and the lightsourcg equals

to f/cosBp wheref is the distance frorgi to the window / Le(Y, ) - cosB- V(¥, %)

plane, that is also called tHiecal distance Using this and -2 (o, %, ) -cosd’ dy, (18)
equation (15), differential aredX can be expressed and g | |

substituted into equation (14), thus we can obtain:

whereQsis the solid angle in which lightsour&is visi-

(T L) (00) = ble,yis a running point on the lightsource a@ds the an-
: gle betweernw and the surface normal of the lightsource
500 ¢ 0o OSB3 aty. | g
ZiA /—n fr(w, X, w) - 2 dp. The average reflected radiance of patdt
i
W
1
Let P be the set of pixels in which patchis visible (TL%F)j(w) = E'/(T L®P)(X, w) dX =
from the lightsource. Pj is computed by running a z- ! A

buffer/constant shading rendering step for each sides of

the window surface, assuming that the color of pati$ e/ L(¥, oY) - cosB - v(¥,R)
j, then reading back the “images”. The reflected radianc AJ |y |2

on patchj is approximated by a discrete sum as follows: s A

-cost' - fr (o, %, w) dX dy,

(19)
T L) (w) ~ The outer integral is estimated by trapezoidal rule. It
means that the lightsource area is tessellated to triangles
L o , 3 (or quadrilaterals). The integrand is evaluated at the com-
;WZAJ ' Ep fr(e,%,00)-cosBp 0P, (16)  mon vertices and is assumed to be linear between the ver-
= P tices. If the number of vertices Is then the quadrature
wheredP is the area of a single pixel in the image Ris rule is:
the resolution of the image — i.e. the top of the hemicube (TL®P)j(w) ~
containR x R pixels, while the side faces contd®x R/2

pixels — thendP = 4f2/R2. If the BRDF can be assumed | o Le(¥ of) - COS: - V(T %
to be fj(«f,w) in patchj, then the reflected radiance can %/ (3, '33 ' )_<'2 (%,%) -cos; - fr (wf, R, w) dX,
be decomposed into 3 factors: the power spectrum of thé=1"" Aj ¥ =X

lightsource®;, the BRDFfj (), w) which is also a spec-
trum and is the only factor which depends on viewing di-
rectionw, and a scalar factor:

where§; is the total area of the lightsource triangles that
share vertex and factor ¥3 comes from the fact that a
triangle has 3 vertices.
coso? Notg that the irmer integra[ is .the same as the integral in
peEPj P equation (14), with the substitution
These scalar factors are computed and stored at each patch, i < L%V, ) - cosh; -
which requires just one float variable per each patch and am
each point lightsource. There is another slight difference in the window surface.
If variablesrij are available, then the incoming first- A one-sided area lightsource can emit light into that half-
shot phase is complete. During global illumination when space which is “above” the plane of lightsource. Thus the

rij = !
U TR2A,

Su



window surface becomeshemicubgfigure 4). An even
better window surface is thmubic tetrahedroii2], since it
has just 3 faces while the hemicube has 5.

Figure 4: Placement of the hemicube around a lightsource

point and the images on the 5 hemicube faces

Summarizing the incoming first-shot from a small area
lightsource consists of the following steps. First the light-
source is decomposed into a triangle mesh. A hemicub

or a cubic tetrahedron is placed at each vegterf the

mesh and the visibility of the other surfaces are deter-

mined. Scalar factors

45 - cosh;

ri = -5 coso®
Y %ﬁ P

are stored in each patch.

following way:
(TLR)j(w) = 3 LT, &) - rij - £ (of, ).

(20)

5 Application of the incoming
first- shot to ray-bundle based
stochastic iteration

In this section the incoming first-shot technique is applied
to stochastic iteration.

incoming first-shot

PR first shot

<€ PrEViOUS
radiance transfer

<«— current radiance
transfer

~— eyetransfer

radiance transfersin an iteration step

.“’

e,.s"ﬁrevi ous
=" global random
direction

" current
» global random direction

current
global random direction
-—

Figure 5: Ray-bundle stochastic iteration with incoming

?i rst-shot

The ray-bundle based stochastic iteration [21] works as
follows. At each step of the iteration a uniformly dis-
tributed random global direction is sampled, and the ra-
diances of all patches in the scene are transferred into this
direction. Having computed the transfer, each patch may
have some incoming radiance depending what is seen in
selected direction. This incoming direction is reflected to-

The reflected radiance can be obtained from this scalawards the eye, which results in an image estimate. The av-
factor during the global illumination computation in the erage of image estimates of subsequent iteration steps will



provide the final result. Note that in the next iteration step, 7 Conclusions

when the radiance is transferred again in the new direc-

tion, the radiance is obtained from the incoming radianceThis paper has presented a preprocessing method which
of the previous transfer. Thus the method requires just ongeplaced the emission of small and point lightsources by
variable per patch which stores the incoming radiance oftheir reflection. This replacement makes the integrand
the previous iteration step. significantly flatter, which improves most of the global
illumination algorithm. Incoming first-shot requires the
identification of the surface areas that can be seen from

given iteration step not only the incoming radiance of thethe sample points of the lightsources. We adapted the

previous transfer is reflected towards to new direction buthe][.n'.wb? apprﬁgtr‘,]h for tg's cillculzztlgn,'mherltmg atllhso Its
also the illumination of the lightsources that are associateade iclencies, which can be reduced by increasing e res-

with the given patch. Thus the overhead is jUBRDF olution of the hemicube. Note that in our approach the
computations per each patch at each iteration, whése hemicube is placed just at a few sample points, thus its

the number of those point lightsources and vertices of theoerformange and resolution are not critical ISSUES. T_he
area lightsources which are visible from the patch. incoming first-shot method has also been combined with

ray-bundle based stochastic iteration, and we come to the
conclusion that incoming first shot pays off since it signif-
icantly increases the convergence speed. With this com-
bination the global illumination of scenes of ten thousand

. . patches becomes possible in a few minutes.

6 Simulation results This method makes a greater part of the global illumina-
tion problem view-independent thus it provides a promis-

The presented algorithms have been implemented in C+4|_ng framework for developing interactive walkthrough ani-

. . . . mations for non-diffuse global illumination renderings. In-
in OpenGL environment. The running times have beenstead of storing the complete radiance function [16, 19]
measured on a PC with 300 MHz Pentium Il processor 9 b ' '

without anv araphics accelerators. The image and th this approach stores just the effect of the lightsources, thus
. Y grap! ) 9 She required preprocessing time and the storage remain
hemicube resolutions were 8@B00.

moderate.
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Figure 6: Error of ray-bundle stochastic iteration with and without incoming first-shot
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