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Abstract

This paper presents a method that can replace the small
and medium size lightsources by their effect in non-diffuse
global illumination algorithms. Incoming first-shot is
a generalization of a preprocessing technique called the
first-shot that was developed for speeding up global diffuse
radiosity algorithms. In order to reduce the prohibitive
memory requirements of the original first-shot when it is
applied to non-diffuse scenes in a direct manner, the pro-
posed new method computes and stores only the incoming
radiance generated by the lightsources and the reflected
radiance is obtained from the incoming radiance on the
fly taking into account the local BRDF. Since the radi-
ance function of the reflection is smoother and flatter then
the original lightsource function, this replacement makes
the integrand of the rerdering equation have significantly
smaller variation, which can speed up global illumination
algorithms. The paper also discusses how the first-shot
technique can be built into a stochastic iteration algorithm
using ray-bundles, and provides run-time statistics.
Keywords: Non-diffuse global illumination, stochastic it-
eration, Monte-Carlo quadrature, global methods, finite-
element techniques, first-shot

1 Introduction

Global illumination algorithms aim at obtaining the power
detected by a collection of measuring devices. The mea-
surement process is characterized by the following equa-
tion
Z
S

Z



L(~y; !) � cos � �W e(~y; !) d~y d! =ML; (1)

whereL(~y; !) is theradiance, � is the angle between the
surface normal and direction! andW e(~y; !) is thesen-
sitivity of the measuring device. A measuring device can
detect, for example, the power reaching the eye through a
pixel.

The radiance function can be obtained by solving the
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rendering equation[4] that has the following form:

L = Le + T L: (2)

In this integral equation, operatorT describes the light
transport

T L(~x; !) =
Z



L(h(~x;�!0); !0) �fr(!0; ~x; !) �cos �0 d!0

(3)
whereL(~x; !) andLe(~x; !) are the radiance and emission
of the surface in point~x at direction!,
 is the directional
sphere,h(~x; !0) is the visibility function defining the point
that is visible from point~x at direction!0, fr(!0; ~x; !) is
the bi-directional reflection/refraction function, and�0 is
the angle between the surface normal and direction�!0

(figure 1).
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Figure 1: Geometry of the rendering equation

Let us substitute functionL in the right side by the com-
plete right side (which equals toL) recursively. If the in-
tegral operator is a contraction, this provides the solution
in the form of an infinite series:

L = Le + T L = Le + T (Le + T L) =

(Le + T (Le + T (Le + : : :) : : :): (4)

Thus the measured power is

ML =M(Le + T (Le + T (Le + : : :) : : :): (5)

Random-walk [8] and stochastic iteration [9] algorithms
evaluate the integrals of this formula by Monte-Carlo



quadrature. Monte-Carlo integration is justified by the
facts that its complexity does not grow with the dimension
of the domain of the integration and it does not accumulate
the error.

The integrals providing the solution of the rendering
equation have the following form:

T (Le + T (Le + : : :) : : :) = T (Le + Li) =Z



(Le + Li) � fr � cos �0 d!0

whereLi is the indirect illumination computed by the sub-
sequent integration. Monte-Carlo estimates are accurate if
the integrand

Lr(!0) = (Le + Li) � fr � cos �0

is “flat”, i.e. close to constant, otherwise the estimates
have high variance. Let us examine this statement for-
mally. Suppose that this integral is evaluated by Monte-
Carlo quadrature, thus it is converted to an expected value,
which is estimated by an average. Assume that a random
direction!0 is sampled from a probability density!0. The
integral to be computed is:Z




Lr(!0) d!0 =
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EstimatorL̂r is also a random variable whose standard de-
viation is�=

p
N where�2 is

�2 =

Z
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Lr(!) d!
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� p(!0) d!0: (7)

This standard deviation is small ifLr(!0)=p(!0) is close
to the value of the integral

R



Lr(!) d! everywhere in the

domain.
One way of reducing the variance of the Monte-Carlo

integration is the application of some form ofimportance
sampling[7], which means thatp(!0) mimics the inte-
grandLr(!0) to makeLr(!0)=p(!0) approximately con-
stant. Unfortunately, the integrand of the rendering equa-
tion is not available explicitely, thus the probability density
is usually based only on the local BRDFs [3, 5] — i.e. it
mimicsfr � cos �0 instead of(Le +Li) � fr � cos �0, which
can be quite inaccurate.

Another possibility is a different formulation of the
global illumination problem as an integral, where the inte-
grand is significantly flatter. Since the problematic part is
the incoming radiance which stems both directly and indi-
rectly from the emission of the lightsources, we aim at re-
placing the lightsource term by a different function which
is flatter. For example, we can replace the emissions of the
lightsources by their first reflection, which leads us to the
core idea of the first-shot methods.

2 The basic idea of first-shot

First-shotis a preprocessing method that shoots the power
of the small lightsources onto other surfaces, increase the
emission of the other surfaces by the reflection, then re-
moves the original lightsources from the scene.
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Figure 2: First-shot technique

Formally, the unknown radianceL is decomposed into
two terms:

L = Lep + Lnp (8)

whereLep is the emission of the small area and point light-
sources,Lnp is the emission of the larger area lightsources
and the reflected radiance. Substituting this into the ren-
dering equation we have:

Lep + Lnp = Le + T (Lep + Lnp): (9)

ExpressingLnp we obtain:

Lnp = (Le � Lep + T Lep) + T Lnp: (10)

Introducing the new lightsource term

Le� = Le � Lep + T Lep (11)

which just replaces the point lightsources (Lep) by their
single reflection (T Lep), the equation forLnp is similar to
the original rendering equation:

Lnp = Le� + T Lnp: (12)

Note that when this equation is solved, integrand

Lr�(!0) = (Le� + Li�) � fr � cos �0

is flatter than the original integrand.
Summarizing, first-shot computes the direct illumina-

tion caused by the small lightsources, then removes these
lightsources from the scene during global illumination cal-
culation, and adds them again at the end of the computa-
tion.

The reflection of the small lightsources can be computed
in a preprocessing phase of the global illumination algo-
rithm, or simultaneously with the global illumination al-
gorithm when it is needed. Furthermore, it is also possible



to do some parts of the calculation in the preprocessing
phase while completing the computation on-the-fly with
the global illumination algorithm.

We can consider the following alternatives:

1. Classical first-shot: The reflected radiance is com-
puted completely in the preprocessing phase. This
method [2] works well in the radiosity setting, since
in this case, the representation of the reflected ra-
diance requires a diffuse “emission” in each patch,
thus the memory overhead of the first-shot is just one
variable per patch. However, in non-diffuse scenes
the classical first-shot has prohibitive memory re-
quirements, since even if the original light-sources
are diffuse, their reflection may have general direc-
tional function, which requires the representation of
the complete reflected, non-diffuse radiance function.
If the directional variation of the radiance is repre-
sented byn basis functions (i.e.n is the number of
small solid angles in which the radiance can be sup-
posed to be constant) in each patch, then the method
requiresn new variables for each patch.

2. Diffuse first-shot: The BRDF, the light-transport op-
erator, and the reflected radiance are decomposed into
diffuse and non-diffuse components and the previ-
ous first-shot is applied only to the diffuse reflected
radiance. This method can be used in those finite-
element, non-diffuse global illumination algorithms
which can make a distinction between the first and
the other bounces of the light.

3. Incoming first-shot: The incoming radiance is com-
puted in the preprocessing phase and the reflected ra-
diance is obtained from the incoming radiance on the
fly. Since the surfaces can also be non-diffuse, the
incoming radiance received by the patches from each
point lightsource should be stored (this requiresl ad-
ditional variables per patch, wherel is the number
of point samples of the lightsources) [10]. The sec-
ondary, non-diffuse emission to a direction is com-
puted from these irradiances. The method is feasible
if l is small, which is the case if the scene contains
a few point lightsources and small area lightsources
whose contribution can be accurately evaluated.

4. On-the-fly direct lightsource computation: Every-
thing is done simultaneously to the global illumina-
tion algorithm. This approach requires neither pre-
processing nor storage but is slower than the previ-
ous methods. finite-element tesselation. WhenLe� is
needed in a point, shadow rays are traced towards the
real lightsources andLe� is computed as their reflec-
tion.

This paper discusses the incoming first-shot method and
its application in a stochastic iteration algorithm.

3 Incoming first-shot of point
light-sources

Suppose that the scene containsl point lightsources at
locations~y1; : : : ~yl with powers�1; : : : ;�l, respectively,
then their reflection at point~x is:

(T Lep)(~x; !) =
lX

i=1

�i � v(~yi; ~x)
4�j~yi � ~xj2 � fr(!

0

i; ~x; !) � cos �0i;

(13)
where!0

i is the direction of lightsourcei, �0i is the angle
between!0

i and the surface normal, andv(~yi; ~x) indicates
the mutual visibility of~x and~yi. Suppose that the patch
under consideration is patchj and its area isAj . The av-
erage reflected radiance is:

hT Lepij(!) = hT Lepij(!) =
1

Aj

�
Z
Aj

(T Lep)(~x; !) d~x =

lX
i=1

1

Aj

�
Z
Aj

�i � v(~yi; ~x)
4�j~yi � ~xj2 � fr(!

0

i; ~x; !) � cos �0i d~x: (14)

To compute the reflection of a lightsource at a point, the
visibility of the lightsource from the point must be de-
termined. We can useshadow rays evaluated by ray-
shooting, but this is rather slow. Another alternative is
to exploit the image synthesis hardware in the following
way. The eye is put at the lightsource and the window is
defined as one of the faces of a cube placed around the
eye. Rendering the images for each faces using constant
shading and using the index of the patches as color values,
the visible areas of the patches from the lightsource can be
determined.
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Figure 3: Computation of the lightsource visibility by
hardware

The integral in equation (14) can also be evaluated on
the six window surfaces (W ) that form a cube around the
lightsource. To find formal expressions, let us express the
solid angled
p, in which a differential surface aread~x is
seen through pixel aread~p, both from the surface area and



from the pixel area:

d
p =
d~x � cos �0i
j~yi � ~xj2 =

d~p � cos �p
j~yi � ~pj2 ; (15)

where�p is the angle between direction pointing to~x from
~yi and the normal of the window (figure 3). The distance
j~yi�~pj between pixel point~p and the lightsource~yi equals
to f= cos �p wheref is the distance from~yi to the window
plane, that is also called thefocal distance. Using this and
equation (15), differential aread~x can be expressed and
substituted into equation (14), thus we can obtain:

hT Lepij(!) =

lX
i=1

1

Aj

�
Z
W

�i � v(~yi; ~x)
4�

� fr(!0

i; ~x; !) �
cos �3p
f2

d~p:

Let Pj be the set of pixels in which patchj is visible
from the lightsource.Pj is computed by running a z-
buffer/constant shading rendering step for each sides of
the window surface, assuming that the color of patchj is
j, then reading back the “images”. The reflected radiance
on patchj is approximated by a discrete sum as follows:

hT Lepij(!) �

lX
i=1

�i

4�f2Aj

�
X
p2Pj

fr(!
0

i; ~x; !) � cos �3p � �P; (16)

where�P is the area of a single pixel in the image. IfR is
the resolution of the image — i.e. the top of the hemicube
containsR�R pixels, while the side faces containR�R=2
pixels – then�P = 4f2=R2: If the BRDF can be assumed
to be ~fj(!

0

i; !) in patchj, then the reflected radiance can
be decomposed into 3 factors: the power spectrum of the
lightsource�i, the BRDF ~fj(!

0

i; !) which is also a spec-
trum and is the only factor which depends on viewing di-
rection!, and a scalar factor:

rij =
1

�R2Aj

�
X
p2Pj

cos �3p:

These scalar factors are computed and stored at each patch,
which requires just one float variable per each patch and
each point lightsource.

If variablesrij are available, then the incoming first-
shot phase is complete. During global illumination when
the reflected radiancehT Lepij(!) is needed at point~x of
patchj, this is computed on the fly from the stored scalar
parameterrij , from the directions pointing from~x to the
lightsources and from the power of the lightsources:

hT Lepij(!) =
lX

i=1

�i � rij � f jr (!0

i; !): (17)

4 Small area light-sources

Now let us discuss the computation of a single reflection of
the light coming from a small area lightsourceS of emis-
sionLe(~y; !) to a point~x. The reflection at point~x is

(T Lep)(~x; !) =
Z

S

Le(h(~x;�!0); !0) � fr(!0; ~x; !) � cos �0 d!0 =

Z
S

Le(~y; !0) � cos � � v(~y; ~x)
j~y � ~xj2 � fr(!0; ~x; !) � cos �0 d~y;

(18)
where
S is the solid angle in which lightsourceS is visi-
ble,~y is a running point on the lightsource and� is the an-
gle between!0 and the surface normal of the lightsource
at~y.

The average reflected radiance of patchj is

hT Lepij(!) =
1

Aj

�
Z
Aj

(T Lep)(~x; !) d~x =

Z
S

1

Aj

�

Z
Aj

Le
(~y; !0

) � cos � � v(~y; ~x)

j~y � ~xj2
�cos �

0

�fr(!
0

; ~x; !) d~x d~y;

(19)
The outer integral is estimated by trapezoidal rule. It

means that the lightsource area is tesselated to triangles (or
quadrilaterals). The integrand is evaluated at the common
vertices and is assumed to be linear between the vertices.
If the number of vertices isl, then the quadrature rule is:

hT Lepij(!) �

lX
i=1

1

Aj

�

Z
Aj

Le
(~yi; !

0

i) � cos �i � Sti � v(~yi; ~x)

3j~yi � ~xj2
�cos �

0

i�fr(!
0

i; ~x; !) d~x;

whereSti is the total area of the lightsource triangles that
share vertexi and factor1=3 comes from the fact that a
triangle has 3 vertices.

Note that the inner integral is the same as the integral in
equation (14), with the substitution

�i

4�
( Le(~yi; !

0

i) � cos �i �
Sti

3
:

There is another slight difference in the window surface.
A one-sided area lightsource can emit light into that half-
space which is “above” the plane of lightsource. Thus the
window surface becomes ahemicube(figure 4). An even
better window surface is thecubic tetrahedron[1], since it
has just 3 faces while the hemicube has 5.

Summarizing the incoming first-shot from a small area
lightsource consists of the following steps. First the light-
source is decomposed into a triangle mesh. A hemicube
or a cubic tetrahedra is placed at each vertex~yi of the



hemicube placement looking down looking to the left

looking to the right looking forward looking backward

Figure 4: Placement of the hemicube around a lightsource point and the images on the 5 hemicube faces

mesh and the visibility of the other surfaces are deter-
mined. Scalar factors

rij =
4Sti � cos �i
3R2Aj

�
X
p2Pj

cos �3p

are stored in each patch.
The reflected radiance can be obtained from this scalar

factor during the global illumination computation in the
following way:

hT Lepij(!) =
X
i

Le(~yi; !
0

i) � rij � f jr (!0

i; !): (20)

5 Application of the incoming
first- shot to ray-bundle based
stochastic iteration

In this section the incoming first-shot technique is applied
to stochastic iteration.

The ray-bundle based stochastic iteration [9] works as
follows. At each step of the iteration a uniformly dis-
tributed random global direction is sampled, and the ra-
diances of all patches in the scene are transferred into this
direction. Having computed the transfer, each patch may
have some incoming radiance depending what is seen in
selected direction. This incoming direction is reflected to-
wards the eye, which results in an image estimate. The av-
erage of image estimates of subsequent iteration steps will

provide the final result. Note that in the next iteration step,
when the radiance is transfered again in the new direction,
the radiance is obtained from the incoming radiance of the
previous transfer. Thus the method requires just one vari-
able per patch which stores the incoming radiance of the
previous iteration step.

The combination of this method with the proposed in-
coming first-shot techniques is quite straightforward. At a
given iteration step not only the incoming radiance of the
previous transfer is reflected towards to new direction but
also the illumination of the lightsources that are associated
with the given patch. Thus the overhead is justl BRDF
computations per each patch at each iteration, wherel is
the number of those point lightsources and vertices of the
area lightsources which are visible from the patch.

6 Simulation results

The presented algorithms have been implemented in C++
in OpenGL environment. The running times have been
measured on a PC with 400 MHz Pentium II processor.

The scene of figure 7 contains a 3D Sierpiensky set and
has 22768 patches. The diffuse albedo of the patches in
this set is(0:18; 0:06; 0:12) on the wavelengths 400 nm,
552 nm and on 700 nm, respectively. The specular albedo
is wavelength independent and is between 0.8 and 0.4 de-
pending on the viewing angle. The non-diffuse reflection
was modelled by the physically plausible stretched Phong
model [6]. The “shine” parameter is 3.



Figure 6 compares the speed of the convergence of
stochastic iteration with and without the proposed incom-
ing first-shot step. In figure 7 the timing and the image
quality of the two methods can also be compared. For the
first-shot, the area lightsource has been subdivided into a
mesh of 8 triangles and 9 vertices. The incoming first-shot
phase took 55 seconds, which were needed by the9� 5 z-
buffer/constant-shading rendering steps. A single radiance
transfer by a ray-bundle took 1.5 seconds without the first-
shot results and 2 seconds when the incoming first-shot
was also used. The 0.5 second overhead is due to the re-
flection of the result stored by the incoming first-shot both
towards the eye and towards to next global direction.

However, we can conclude that incoming first-shot is
worth for this small extra time, since the resulting algo-
rithm converges very quickly, and the image is almost fully
converged after 2.5 minutes. Comparing the error curves,
we can see that the stochastic iteration is about10 – 20
times faster with the incoming first-shot than without it.

current
global random direction

radiance transfers in an iteration step

previous
global random
direction

current
global random direction

computation of the image estimate in an iteration step

incoming first-shot

image plane

first shot

previous
radiance transfer

current radiance 
transfer

eye transfer

Figure 5: Ray-bundle stochastic iteration with incoming
first-shot

7 Conclusions

This paper has presented a preprocessing method which
replaced the emission of small and point lightsources by
their reflection. This replacement makes the integrand sig-
nificantly flatter, which improves most of the global illu-
mination algorithm. The incoming first-shot method has
also been combined with ray-bundle based stochastic iter-
ation. With this combination, the non-diffuse global illu-
mination solution of quite complex scenes becomes possi-
ble interactively (within a few minutes).
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Figure 6: Error of ray-bundle stochastic iteration with and without incoming first-shot

0 iteration, 0 secs 47 iterations, 70 secs 100 iterations, 150 secs

first-shot+ 0 iteration, 50 secs first-shot+ 10 iterations, 70 secs first-shot+ 50 iterations, 150 secs

Figure 7: Comparison of stochastic iteration without (upper-row) and with incoming first-shot (lower-row)


