
EUROGRAPHICS 2005 / J. Dingliana and F. Ganovelli Short Presentations

Real-Time Rendering of Cloudy Natural Phenomena with
Hierarchical Depth Impostors

Tamás Umenhoffer, László Szirmay-Kalos

Department of Control Engineering and Information Technology, Budapest University of Technology, Hungary
Email: szirmay@iit.bme.hu

Abstract
This paper presents a real-time method to realistically render dynamic participating media under changing light-
ing conditions. In order to cope with performance requirements, the volume is built of instances of particle blocks.
The simulation and rendering happen on two levels, on the block level and on the volume level. On the volume
level blocks are replaced by depth impostors, which allows for very fast recalculation of the cloud illumination.
Including depth information into block impostors our technique also eliminates billboard clipping artifacts when
the participating medium contains objects. The proposed method can render swirling clouds and smoke on high
frame rates, and can be used in real-time applications.

1. Introduction

Participating media [Bli82] are often represented as particle
systems [Ree83]. Particle system rendering methods usually
execute a pass for each light source to calculate shadows
and lighting in a view independent way, and a final gather-
ing pass to compute the image from the camera [Har02]. In
these passes particles are splat onto the screen, which substi-
tutes them with a semi-transparent, camera-aligned rectan-
gle, called billboard [Sch95]. Ignoring the extension along
the third dimension simplifies rendering, but cause visual ar-
tifacts when the billboard rectangle intersects an object.

A particle system is a discretization of a continuous vol-
ume, which allows us to replace the differentials of the volu-
metric rendering equation by finite differences. Denoting the
length of the ray segment intersecting the sphere of particle
j by ∆s j, and the density, albedo and phase function of this
particle by τ j,a j,Pj, respectively, we obtain the following
equation expressing outgoing radiance L(j,�ω) of particle j
at direction �ω:

L(j,�ω) = I(j,�ω) · (1−α j)+α j ·Cj, (1)

where I(j,�ω) is the incoming radiance, α j = 1− e−τ j∆s j is
the opacity that expresses the decrease of radiance caused by

this particle due to extinction, and

Cj = a j ·
∫

Ω′

I(j,�ω′) ·Pj(�ω′,�ω)dω′

is the contribution from in-scattering. The opacity also de-
pends on the distance of the ray and the particle center, since
rays that are close to the center travel longer inside the parti-
cle sphere and thus the attenuation is more significant. This
dependence is usually represented by a opacity billboard,
which is also used to display the particle as semi-transparent
rectangles perpendicular to the ray.

The in-scattering term requires the evaluation of a direc-
tional integral at each particle j. Real-time methods usually
simplify this integral and consider only the directions of the
light sources in these integrals, and thus allowing only atten-
uation and forward scattering [Har02]. The incoming radi-
ance for all particles can be effectively evaluated executing a
light pass for each light source. In a light pass, particles are
sorted along the light direction, and their opacity billboards
are rendered one by one in this order. Before rendering a par-
ticle, the color buffer is read back to obtain the light attenua-
tion at this particle, then the opacity texture of the particle is
combined with the image to prepare the light attenuation for
the subsequent particle. The incoming radiance of a particle
due to a given light source is computed from the light source
intensity and the opacity accumulated so far.

c© The Eurographics Association 2005.

Umenhoffer, Szirmay-Kalos / Real-Time Rendering of Cloudy Natural Phenomena with Hierarchical Depth Impostors

If we know the incoming radiance of particles, the vol-
ume can efficiently be rendered from the camera using alpha
blending. The in-scattering term of a particle is obtained by
multiplying the albedo and the phase function with the in-
coming radiance values due to the different light sources,
which is attenuated according to the total opacity of the par-
ticles that are between the camera and this particle. This re-
quires the sorting of particles in the view direction before
sending them to the frame buffer in back to front order. At a
given particle, the evolving image is decreased according to
the opacity of the particle and increased by its in-scattering
term (equation 1).

In this paper we propose the application of particle hi-
erarchies to reduce the computational burden of rendering.
On the lower level, particles are grouped into blocks, that
are rendered once for the current viewing or lighting direc-
tion, then the role of the individual particles are taken by
these blocks. To eliminate the read-backs of the color buffer,
we compute the attenuation at discrete depth samples during
light passes. We also propose a novel solution for includ-
ing objects into the volume without billboard clipping arti-
facts, which uses depth impostors, i.e. billboards augmented
with depth information. Unlike nailboards [Sch97, Szi05],
our depth impostors store both the front and back depths of
a block.

2. The new method using particle hierarchies

To reduce the computational burden of rendering, parti-
cle hierarchies are formed, and the full system is built of
smaller similar blocks. As most natural phenomena shows
self-similarity, we can use this approximation in most cases.

A single block represents particles that are close to each
other. Before rendering for a given direction, the image of
the particles of a block is determined from this direction,
and then we use these images instead of individual particles.
The image is called depth impostor. A pixel of the depth im-
postor stores information that is needed about the particles
which project onto this pixel, particularly their total opacity,
their minimum (front) and maximum (back) depths. During
rendering an impostor pixel acts as a “super-particle” that
concentrates all those particles of the block, which are pro-
jected onto it. The total opacity is used in the radiance trans-
fer, while the depths are taken into account to eliminate arti-
facts caused by objects included in the volume.

Replacing particles by blocks, the computation burden
can be reduced significantly. If we want a system with N par-
ticles, we can build a block of b particles and instance it N/b
times. The hierarchical approach needs only b+N/b calcu-
lations during simulation and color computation, in contrast
to N calculations of the non-hierarchical method.

2.1. Generating a depth impostor

To generate a depth impostor representing a block for a par-
ticular direction (either light or camera), the particles of the
block are rendered and the total opacity, and front and back
depths are computed for each pixel on the GPU. These depth
impostors are first generated for particle spheres and then
for volume blocks. The opacity texture of a particle is pre-
defined, and the depth textures of a particle sphere can be
created analytically evaluating the depths of a sphere in the
preprocessing phase.

The total opacity of a block could be determined using
alpha blending of the opacity textures of the particles. The
depth values of the block, however, require a different op-
eration. A simple approach would generate the front and
back depth textures of a block by rendering particle the
front and back textures of the particles, overwriting the frag-
ment depth value in the fragment shader, and letting the z-
buffer to find the minimum and the maximum in two differ-
ent passes. However, this simple approach needs three ren-
dering passes for each particle block. Fortunately, it is also
possible to execute the three different calculations in a sin-
gle rendering pass if depth testing is replaced by alpha test-
ing. With the GL_EXT_blend_minmax extension we can set
a blend function which computes minimum or maximum.
However, this blending is appropriate only for the depth val-
ues, but not for the total opacity, which can be solved by
the GL_EXT_blend_equation_separate extension, allowing
a different blending type for the alpha channel. The layers of
a depth impostor are shown in figure 1.

Figure 1: Depth impostor layers of a block: front depth, back
depth, and accumulated opacity

2.2. Using depth impostors during light passes

Rendering participating media consists of a separate light
pass for each light source determining the approximation of
the in-scattering term caused by this particular light source,
and a final gathering step. Handling light volume interac-
tion on the particle level would be too computation inten-
sive since the light pass requires the incremental rendering
of all particles and the read back of the actual result for each
of them. To speed up the process, we render particle blocks
one by one, and separate light–volume interaction calcula-
tion from the particles.

During a light pass we classify particle blocks into groups

c© The Eurographics Association 2005.

Umenhoffer, Szirmay-Kalos / Real-Time Rendering of Cloudy Natural Phenomena with Hierarchical Depth Impostors

according to their distances from the light source, and store
the evolving image in textures at given sample distances.
These textures are called slices. The first texture will display
the accumulated opacity of the first group of particle blocks,
the second will show the opacity of the first and second
groups of particle blocks and so on. The required number of
depth samples depends on the particle count and the cloud
shape. For a roughly spherical shape and relatively few par-
ticles (where overlapping is not dominant), even four depths
can be enough. Figure 2 shows this technique with five depth
slices. Four slices can be computed simultaneously if we
store the slices in the color channels of one RGBA texture.
For a given particle, the vertex shader will decide in which
slice (or color channel) this particle should be rendered. The
vertex shader sets the color channels corresponding to other
slices to zero, and the pixel is updated with alpha blending.

2.3. Using depth impostors during final gathering

During final rendering we obtain the depth impostors of the
blocks for the viewing direction, sort them and render them
one after the other in back to front order. The in-scattering
term is obtained from the sampled textures of the slices that
enclose the pixel of the block (figure 2).

The accumulated opacity of the slices can be used to de-
termine the radiance at the pixels of these slices and finally
the reflected radiance of a particle between the slices. Know-
ing the position of the particles we can decide which two
slices enclose it. By linear interpolation between the values
read from these two textures we can approximate the atten-
uation of the light source color. Harris used a similar tech-
nique in [HBSL03], where he stored these slices in a 3D tex-
ture called oriented light volume. In order to obtain a better
multiple scattering approximation, the radiance of those pix-
els of both enclosing slices are taken into account, for which
the phase function is not negligible.

sky color

depth impostor

slice 1

slice 2

slice 3

light source

light
pass

final gathering
pass

Figure 2: Final gathering for a block

2.4. Objects in clouds

The main problem with billboard type particle systems is
that billboards are planes, thus they have no extension along

one dimension. This can cause artifacts when billboards in-
tersect objects, i.e. the intersection of the billboard plane and
the object becomes clearly noticeable (figure 3). The core of
this problem is that a billboard fades those objects that are
behind it according to its transparency as if the object were
fully behind the sphere of the particle. However, those ob-
jects that are in front of the billboard plane are not faded
at all, thus transparency changes abruptly at the object bill-
board intersection. This problem is solved using the exten-
sion of the particle block, i.e. the interval of the block in the
depth direction, which is stored in impostor texels.

object

billboard

full opacity

no opacity

discontinuity

Figure 3: Problems caused by objects in a volume rendered
as billboards. Where the billboard plane intersects the ob-
ject, transparency becomes discontinuous.

In order to attack this problem, first we render all ob-
jects of the scene and save the depth buffer in a texture.
Then the particle blocks are rendered one by one, enabling
depth test but disabling depth write. When rendering a parti-
cle block, we compute the interval the ray travels inside the
block adding the depth value of the block center to the front
and back depth values of the depth impostor. This interval is
compared with the value storing the depth of the visible ob-
ject. If the object depth value is outside the interval, then the
object is either fully visible or fully occluded by the particle
sphere, thus we can rely on the z-buffer and alpha-blending
hardware to compute the correct result. However, when the
interval of the block encloses the depth of the object, only a
part of the volume block occludes the object. In this case, the
opacity of the particle block is scaled according to the rela-
tive distance between the front depth of the particle block
and the object, and the depth interval of the particle block.
This scaling corresponds to the assumption that the density
is uniform inside a block. The results are shown in figure 4.

Figure 4: Volume rendered with depth impostors eliminating
billboard clipping artifacts

c© The Eurographics Association 2005.

Umenhoffer, Szirmay-Kalos / Real-Time Rendering of Cloudy Natural Phenomena with Hierarchical Depth Impostors

no block, 8000 particles, 8 FPS 1600 blocks, 20 FPS 800 blocks, 42 FPS

400 blocks, 60 FPS 40 blocks, 200 FPS 20 blocks, 180 FPS

Figure 5: Images of animated volumes of 8000 particles organized in different number of blocks

3. Results

The presented algorithm has been implemented in
OpenGL/Cg environment on an NV6800GT graphics
card. The animated cloud of figure 5 consists of 8000
particles grouped to different number of blocks, and is
illuminated by a directional light. The rendering speed
increases as we put more particles in a single block until 40
blocks. For higher number of particles per block, rendering
gets slower, because of the block computation overhead.

Figure 6: Swirling cloud rendered at 180 FPS

4. Conclusions

This paper proposed to build particle clouds of blocks. A
block itself represents many particles, and is defined by a
depth impostor. We also applied depth sampling to com-
pute self-shadowing and multiple forward scattering quickly.
As a combined effect of these improvements, the presented
method renders realistically shaded dynamic smoke or cloud
formations under changing lighting conditions at high frame
rates, taking advantage of the GPU. On the other hand, the
inclusion of front and depth information into the depth im-
postors eliminated billboard clipping artifacts when the vol-
ume contains 3D objects.

5. Acknowledgement

This work has been supported by OTKA (T042735), Ga-
meTools FP6 (IST-2-004363) project, by the Spanish-
Hungarian Fund (E-26/04).

References

[Bli82] BLINN J. F.: Light reflection functions for sim-
ulation of clouds and dusty surfaces. In SIG-
GRAPH ’82 Proceedings (1982), pp. 21–29. 1

[Har02] HARRIS M. J.: Real-time cloud rendering for
games. In Game Developers Conference (2002).
1

[HBSL03] HARRIS M. J., BAXTER W. V., SCHEUER-
MANN T., LASTRA A.: Simulation of cloud dy-
namics on graphics hardware. In Eurographics
Graphics Hardware’2003 (2003). 3

[Ree83] REEVES W. T.: Particle systems - techniques
for modelling a class of fuzzy objects. In SIG-
GRAPH ’83 Proceedings (1983), pp. 359–376.
1

[Sch95] SCHAUFLER G.: Dynamically generated impos-
tors. In I Workshop - Virtual Worlds - Distributed
Graphics (1995), pp. 129–136. 1

[Sch97] SCHAUFLER G.: Nailboards: A rendering prim-
itive for image caching in dynamic scenes. In
Eurographics Workshop on Rendering (1997),
pp. 151–162. 2

[Szi05] SZIJÁRTÓ G.: 2.5 dimensional impostors for re-
alistic trees and forests. In Game Programming
Gems 5, Pallister K., (Ed.). Charles River Media,
2005, pp. 527–538. 2

c© The Eurographics Association 2005.

Umenhoffer, Szirmay-Kalos / Real-Time Rendering of Cloudy Natural Phenomena with Hierarchical Depth Impostors

Figure 7: Swirling cloud crossed by a plane rendered at 180 FPS

c© The Eurographics Association 2005.

