
Volume 25 (2006), Number 3 pp. 1–24

Displacement Mapping on the GPU —
State of the Art

László Szirmay-Kalos, Tamás Umenhoffer

Department of Control Engineering and Information Technology, Budapest University of Technology, Hungary
Email: szirmay@iit.bme.hu

Abstract
This paper reviews the latest developments of displacement mapping algorithms implemented on the vertex, geom-
etry, and fragment shaders of graphics cards. Displacement mapping algorithms are classified as per-vertex and
per-pixel methods. Per-pixel approaches are further categorized as safe algorithms that aim at correct solutions in
all cases, to unsafe techniques that may fail in extreme cases but are usually much faster than safe algorithms, and
to combined methods that exploit the robustness of safe and the speed of unsafe techniques. We discuss the possible
roles of vertex, geometry, and fragment shaders to implement these algorithms. Then the particular GPU based
bump, parallax, relief, sphere, horizon mapping, cone stepping, local ray tracing, pyramidal and view-dependent
displacement mapping methods, as well as their numerous variations are reviewed providing also implementation
details of the shader programs. We present these methods using uniform notations and also point out when dif-
ferent authors called similar concepts differently. In addition to basic displacement mapping, self-shadowing and
silhouette processing are also reviewed. Based on our experiences gained having re-implemented these methods,
their performance and quality are compared, and the advantages and disadvantages are fairly presented.
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1. Introduction

Object geometry is usually defined on three scales, the
macrostructure level, the mesostructure level, and the
microstructure level. A geometric model refers to the
macrostructure level and is often specified as a set of polyg-
onal surfaces. The mesostructure level includes higher fre-
quency geometric details that are relatively small but still
visible such as bumps on a surface. The microstructure
level involves surface microfacets that are visually indis-
tinguishable by human eyes, and are modeled by BRDFs
[CT81, HTSG91, APS00, KSK01] and conventional tex-
tures [BN76, Bli77, CG85, Hec86].

Displacement mapping [Coo84, CCC87] provides high
frequency geometric detail by adding mesostructure prop-

erties to the macrostructure model. This is done by modulat-
ing the smooth macrostructure surface by a height map de-
scribing the difference between the macrostructure and the
mesostructure models (figure 1).

mesostructure surface
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Figure 1: The basic idea of displacement mapping

Displacement mapping algorithms take sample points
and displace them perpendicularly to the normal of the
macrostructure surface with the distance obtained from the
height map. The sample points can be either the vertices
of the original or tessellated mesh (per-vertex displacement
mapping) or the points corresponding to the texel centers
(per-pixel displacement mapping). In case of per-vertex dis-
placement mapping the modified geometry goes through the
rendering pipeline. However, in per-pixel displacement map-
ping, surface details are added when color texturing takes
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place. The idea of combining displacement mapping with
texture lookups was proposed by Patterson, who called his
method as inverse displacement mapping [PHL91].

Inverse displacement mapping algorithms became popu-
lar also in CPU implementations. CPU based approaches
[Tai92, LP95] flattened the base surface by warping and
casted a curved ray, which was intersected with the displace-
ment map as if it were a height field. More recent meth-
ods have explored direct ray tracing using techniques such
as affine arithmetic [HS98], sophisticated caching schemes
[PH96] and grid base intersections [SSS00]. Improvements
of height field ray-tracing algorithms have also been pro-
posed by [CORLS96, HS04, LS95, Mus88]. Huamin Qu et
al. [QQZ∗03] proposed a hybrid approach, which has the
features of both rasterization and ray tracing.

On the GPU per-vertex displacement mapping can be im-
plemented by the vertex shader or by the geometry shader.
Per-pixel displacement mapping, on the other hand, is ex-
ecuted by the fragment shader. During displacement map-
ping, the perturbed normal vectors should also be computed
for illumination, and self-shadowing information is also of-
ten needed.

In this review both vertex shader and fragment shader ap-
proaches are discussed and compared. Performance mea-
surements have been made on NVidia GeForce 6800 GT
graphics cards. When we briefly address geometry shader
algorithms, an NVidia GeForce 8800 card is used for perfor-
mance measurements. Shader code samples are in HLSL.

2. Theory of displacement mapping

Let us denote the mesostructure surface by the paramet-
ric form ~r(u,v), the macrostructure surface by ~p(u,v), the
unit normal of the macrostructure surface by ~N0(u,v), and
the displacement by scalar function h(u,v) called the height
map. Vectors are defined by coordinates in 3D modeling
space. Parameters u,v are in the unit interval, and are also
called texture coordinates, while the 2D parameter space
is often referred to as texture space. The height map is in
fact a gray scale texture. Displacement mapping decomposes
the definition of the surface to the macrostructure geom-
etry and to a height map describing the difference of the
mesostructure and macrostructure surfaces in the direction
of the macrostructure normal vector:

~r(u,v) = ~p(u,v)+~N0(u,v)h(u,v). (1)

Macrostructure surface ~p(u,v) is assumed to be a trian-
gle mesh. Let us examine a single triangle of the mesh de-
fined by vertices ~p0,~p1,~p2 in modeling space, which are
associated with texture coordinates [u0,v0], [u1,v1], [u2,v2],
respectively. In order to find a parametric equation for the
plane of the triangle, we select two basis vectors in the plane
of the triangle, called tangent and binormal. One possibil-
ity is to define tangent vector ~T as the vector pointing into

the direction where the first texture coordinate u increases,
while binormal ~B is obtained as the vector pointing into the
direction where the second texture coordinate v increases. It
means that tangent ~T and binormal ~B correspond to texture
space vectors [1,0] and [0,1], respectively. The plane of the
triangle can be parameterized linearly, thus an arbitrary point
~p inside the triangle is the following function of the texture
coordinates:

~p(u,v) = ~p0 +(u−u0)~T +(v− v0)~B. (2)

We note that triangle meshes may also be regarded as the
first-order (i.e. linear) approximation of the parametric equa-
tion of the mesostructure surface,~r(u,v). Computing the first
terms of its Taylor’s series expansion, we get

~r(u,v)≈~r(u0,v0)+(u−u0)
∂~r
∂u

+(v− v0)
∂~r
∂v

, (3)

where the derivatives are evaluated at u0,v0. Comparing this
equation to equation 2 we can conclude that

~r(u0,v0) = ~p(u0,v0) = ~p0, ~T =
∂~r
∂u

, ~B =
∂~r
∂v

. (4)
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Figure 2: Tangent space

Tangent and binormal vectors together with the normal of
the macrostructure triangle form a coordinate system that is
attached to the macrostructure surface. This coordinate sys-
tem defines the tangent space [Kil00, Gat03] (figure 2). We
note that other definitions of the binormal are also possible,
which are discussed together with the advantages and disad-
vantages at the end of this section.

If the parametric equation of the mesostructure surface is
not known, then the texturing information of the triangles
can be used [Gat03] to find the tangent and binormal vectors
of a triangle. Substituting triangle vertices ~p1 and ~p2 with
their texture coordinates into equation 2 we obtain

~p1−~p0 = (u1−u0)~T +(v1− v0)~B,

~p2−~p0 = (u2−u0)~T +(v2− v0)~B.

This a linear system of equations for the unknown ~T and ~B
vectors (in fact, there are three systems, one for each of the
x,y, and z coordinates of the vectors). Solving these systems,
we obtain

~T =
(v1− v0)(~p2−~p0)− (v2− v0)(~p1−~p0)
(u2−u0)(v1− v0)− (u1−u0)(v2− v0)

,
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~B =
(u1−u0)(~p2−~p0)− (u2−u0)(~p1−~p0)
(u1−u0)(v2− v0)− (u2−u0)(v1− v0)

. (5)

The normal vector of the triangle can be obtained as the
cross product of these vectors:

~N = ~T ×~B.

We often use the unit length normal vector ~N0 = ~N/|~N|
instead of ~N. Then the surface is displaced by ~N0h. How-
ever, there is a problem. Suppose that the object is scaled
uniformly by a factor s. In this case we expect bumps also
to grow similarly, but ~N0h remains constant. Neither would
the elimination of the normalization work, since if the dis-
placement were defined as ~Nh = (~T ×~B)h, then scaling by s
would multiply the displacement distances by s2. In order to
avoid this, we can set the normal vector that is multiplied by
the height value as [Bli78]

~N =
~T ×~B√

(|~T |2 + |~B|2)/2
. (6)

The selection between alternative ~N0h and equation 6 is
more a modeling than a rendering issue. If we use unit nor-
mals, then the displacement is independent of the size of the
triangle, and also of the scaling of the object. This makes
the design of the bumps easy and the scaling problem can be
solved by scaling the height function generally for the ob-
ject. Using equation 6, on the other hand, the bumps will be
higher on triangles being large in modeling space but being
small in texture space. This makes the design of the height
map more difficult. However, if we use a good parametriza-
tion, where the texture to model space transformation have
roughly the same area expansion everywhere, then this prob-
lem is eliminated. In this second case, uniform scaling would
not modify the appearence of the object, i.e. the relative sizes
of the bumps.

In the remaining part of this paper we use the notation ~N
to refer to the normal vector used for displacement calcula-
tion. This can be either the unit normal, or the normal scaled
according to the length of the tangent and binormal vectors.

Note that in tangent space ~T ,~B,~N are orthonormal, that
is, they are orthogonal and have unit length. However, these
vectors are not necessarily orthonormal in modeling space
(the transformation between the texture and modeling spaces
is not always angle and distance preserving). We should be
aware that the lengths of the tangent and binormal vectors
in modeling space are usually not 1, but express the expan-
sion or shrinking of the texels as they are mapped onto the
surface. On the other hand, while the normal is orthogonal
to both the tangent and the binormal, the tangent and the bi-
normal vectors are not necessarily orthogonal. Of course in
special cases, such as when a rectangle, sphere, cylinder, ro-
tational surface, etc. are parameterized in the usual way, the
orthogonality of these vectors is preserved, but this is not

true in the general case. Consider, for example, a sheared
rectangle.

Having vectors ~T ,~B,~N in the modeling space and point
~p0 corresponding to the origin of the tangent space, a point
(u,v,h) in tangent space can be transformed to modeling
space as

~p(u,v) = ~p0 +[u,v,h] ·



~T
~B
~N


 = ~p0 +[u,v,h] ·M,

where M is the transformation matrix from tangent space to
modeling space. This matrix is also called sometimes as TBN
matrix.

When transforming a vector ~d = ~p− ~p0, for example
the view and light vectors, from modeling space to tangent
space, then the inverse of the matrix should be applied:

[u,v,h] = [dx,dy,dz] ·M−1.

To compute the inverse, in the general case we can ex-
ploit only that the normal is orthogonal to the tangent and
the binormal:

u =
(~T · ~d)~B2− (~B · ~d)(~B ·~T )

~B2~T 2− (~B ·~T )2
,

v =
(~B · ~d)~T 2− (~T · ~d)(~B ·~T )

~B2~T 2− (~B ·~T )2
, h =

~N · ~d
~N2

. (7)

If vectors ~T ,~B,~N are orthogonal to each other, then these
equations have simpler forms:

u =
~T · ~d
~T 2

, v =
~B · ~d
~B2

, h =
~N · ~d
~N2

.

If vectors ~T ,~B,~N were both orthogonal and had unit length,
then the inverse of matrix M could be computed by simply
transposing the matrix. This is an important advantage, so
tangent and binormal vectors are also often defined accord-
ing to this requirement. Having obtained vectors ~T , ~B using
either equation 4 or equation 5, and then ~N as their cross
product, binormal ~B is recomputed as ~B = ~N×~T , and finally
all three vectors are normalized. The advantages of orthonor-
mal ~T , ~B, ~N vectors are the easy transformation between tan-
gent and modeling spaces, and the freedom of evaluating the
illumination also in tangent space since the transformation to
tangent space is conformal i.e. angle preserving. Evaluating
the illumination in tangent space is faster than in world space
since light and view vectors change smoothly so they can
be transformed to tangent space per vertex, i.e. by the ver-
tex shader, interpolated by the graphics hardware, and used
the interpolated light and view vectors per fragment by the
fragment shader. The disadvantage of the orthonormaliza-
tion process is that we lose the intuitive interpretation that
~T and ~B show the effects of increasing texture coordinates u
and v, respectively, and we cannot imagine 3D tangent space
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basis vectors as adding a third vector to the basis vectors of
the 2D texture space.

When height function h(u,v) is stored as a texture, we
have to take into account that compact texture formats repre-
sent values in the range of [0,1] with at most 8 bit fixed point
precision, while the height function may have a higher range
and may have even negative values. Thus the stored values
should be scaled and biased. Generally we use two con-
stants SCALE and BIAS and convert the stored texel value
Texel(u,v) as

h(u,v) = BIAS +SCALE ·Texel(u,v). (8)

Height maps are often stored in the alpha channel of con-
ventional color textures. Such representations are called re-
lief textures [OB99, OBM00]. Relief textures and their ex-
tensions are also used in image based rendering algorithms
[Oli00, EY03, PS02].

Although this review deals with those displacement map-
ping algorithms which store the height map in a two dimen-
sional texture, we mention that three dimensional textures
also received attention. Dietrich [Die00] introduced eleva-
tion maps, converting the height field to a texture volume.
This method can lead to visual artifacts at grazing angles,
where the viewer can see through the spaces between the
slices. Kautz and Seidel [KS01] extended Dietrich’s method
and minimized the errors at grazing angles. Lengyel used a
rendering technique to display fur interactively on arbitrary
surfaces [LPFH01].

2.1. Lighting displacement mapped surfaces

When mesostructure geometry ~r = ~p + ~N0h is shaded, its
real normal vector should be inserted into the illumination
formulae. The mesostructure normal vector can be obtained
in modeling space as the cross product of two vectors in its
tangent plane. These vectors can be the derivatives accord-
ing to texture coordinates u,v [Bli78]. Using equation 1 we
obtain

∂~r
∂u

=
∂~p
∂u

+~N0 ∂h
∂u

+
∂~N0

∂u
h≈ ~T +~N0 ∂h

∂u

since ∂~p/∂u = ~T and on a smooth macrostructure surface
∂~N0/∂u ≈ 0. Similarly, the partial derivative according to v
is

∂~r
∂v

=
∂~p
∂v

+~N0 ∂h
∂v

+
∂~N0

∂v
h≈ ~B+~N0 ∂h

∂v
.

The mesostructure normal vector is the cross product of
these derivatives:

~N′ = ∂~r
∂u
× ∂~r

∂v
= ~N +(~N0×~B)

∂h
∂u

+(~T ×~N0)
∂h
∂v

,

since ~T ×~B = ~N and ~N0×~N0 = 0.

In order to speed up the evaluation of the mesostructure

normal, vectors ~t = ~N0 × ~B and ~b = ~T × ~N0 can be pre-
computed on the CPU and passed to the vertex shader if illu-
mination is computed per vertex, or to the fragment shader if
illumination is computed per fragment. Since vectors~t and~b
are in the tangent plane they can also play the roles of tangent
and binormal vectors. Using these vectors the mesostructure
normal is

~N′ = ~N +~t
∂h
∂u

+~b
∂h
∂v

. (9)

The following fragment shader code computes the
mesostructure normal according to this formula, replacing
the derivatives by finite differences. The macrostructure nor-
mal ~N, and tangent plane vectors~t,~b are passed in registers
and are denoted by N, t, and b, respectively. The texture co-
ordinates of the current point are in uv and the displacement
is in the alpha channel of texture map hMap of resolution
WIDTH×HEIGHT.

float2 du=float2(1/WIDTH, 0);
float2 dv=float2(0, 1/HEIGHT);
float dhdu = SCALE/(2/WIDTH) *

(tex2D(hMap, uv+du).a -
tex2D(hMap, uv-du).a);

float dhdv = SCALE/(2/HEIGHT) *
(tex2D(hMap, uv+dv).a -
tex2D(hMap, uv-dv).a);

// get model space normal vector
float3 mNormal = normalize(N+t*dhdu+b*dhdv);

On the other hand, instead of evaluating this formula to
obtain mesostructure normals we can also use normal maps
which store the mesostructure normals in textures. Height
values and normal vectors are usually organized in a way
that the r,g,b channels of a texel represent either the tangent
space or the modeling space normal vector, and the alpha
channel the height value.

Storing modeling space normal vectors in normal maps
has the disadvantage that the normal map cannot be tiled
onto curved surfaces since multiple tiles would associate
the same texel with several points on the surface, which do
not necessarily have the same mesostructure normal. Note
that by storing tangent space normal vectors this problem is
solved since in this case the mesostructure normal depends
not only on the stored normal but also on the transformation
between tangent and modeling spaces, which can follow the
orientation change of curved faces.

Having the mesostructure normal, the next crucial prob-
lem is to select the coordinate system where we evaluate the
illumination formula, for example, the Phong-Blinn reflec-
tion model [Bli77]. Light and view vectors are available in
world or in camera space, while the shading normal is usu-
ally available in tangent space. The generally correct solu-
tion is to transform the normal vector to world or camera
space and evaluate the illumination there. However, if the
mappings between world space and modeling space, and be-
tween modeling space and tangent space are angle preserv-
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ing, then view and light vectors can also be transformed to
tangent space and we can compute the illumination formula
here.

2.2. Obtaining height and normal maps

Height fields are natural representations in a variety of con-
texts, including e.g. water surface and terrain modeling.
In these cases, height maps are provided by simulation or
measurement processes. Height maps are gray scale im-
ages and can thus also be generated by 2D drawing tools.
They can be the results of surface simplification when the
difference of the detailed and the macrostructure surface
is computed [CMSR98, Bla92, ATI03]. In this way height
and normal map construction is closely related to tessel-
lation [GH99, DH00, DKS01, MM02, EBAB05] and subdi-
vision algorithms [Cat74, BS05]. Using light measurement
tools and assuming that the surface is diffuse, the mesostruc-
ture of the surface can also be determined from reflection
patterns using photometric stereo also called shape from
shading techniques [ZTCS99, RTG97, LKG∗03].

Displacement maps can also be the results of rendering
during impostor generation, when complex objects are ras-
terized to textures, which are then displayed instead of the
original models [JWP05]. Copying not only the color chan-
nels but also the depth buffer, the texture can be equipped
with displacement values [OBM00, MJW07].

The height map texture is a discrete representation of a
continuous function, thus can cause aliasing and sampling
artifacts. Fournier [Fou92] pre-filtered height maps to avoid
aliasing problems. Standard bi- and tri-linear interpolation
of normal maps work well if the normal field is continu-
ous, but may result in visible artifacts in the areas where the
field is discontinuous, which is common for surfaces with
creases and dents. Sophisticated filtering techniques based
on feature-based textures [WMF∗00, TC05, PRZ05] and sil-
houette maps [Sen04] have been proposed in the more gen-
eral context of texture mapping to overcome these problems.

3. Per-vertex displacement mapping on the GPU

Displacement mapping can be implemented either in the ver-
tex shader modifying the vertices, or in the fragment shader
re-evaluating the visibility or modifying the texture coordi-
nates. This section presents the vertex shader solution.

Graphics hardware up to Shader Model 3 (or Direct3D 9)
is unable to change the topology of the triangle mesh, thus
only the original vertices can be perturbed. This has been
changed in Shader Model 4 (i.e. Direct3D 10) compatible
hardware. Assuming Shader Model 3 GPUs the real modifi-
cation of the surface geometry requires a highly tessellated,
but smooth surface, which can be modulated by a height map
in the vertex shader program.

3.1. Vertex modification on the vertex shader

The vertices of the triangles are displaced in the direction
of the normal of the macrostructure surface according to the
height map. New, mesostructure normal vectors are also as-
signed to the displaced vertices to accurately simulate the
surface lighting. Since the introduction of Shader Model 3.0
compatible hardware, the vertex shader is allowed to access
the texture memory, thus the height map can be stored in a
texture. In earlier, Shader Model 1 or 2 compatible hardware
only procedural displacement mapping could be executed in
the vertex shader.

highly tessellated 
macrostructure surface

height map stored
as a texture

vertex
shader rasterization fragment

shader

modified vertices

Figure 3: Displacement mapping on the vertex shader

The following vertex shader program takes modeling
space point Position with macrostructure normal vec-
tor Normal and texture coordinates uv, reads height map
hMap, computes modeling space vertex position mPos, and
transforms the modified point to clipping space hPos:

float h = tex2Dlod(hMap, uv).a * SCALE + BIAS;
float3 mPos = Position + Normal * h;
hPos = mul(float4(mPos,1), WorldViewProj);

Figure 4 has been rendered by this vertex shader. Note
that the macrostructure geometries, which are a square and
a cylinder, should be finely tessellated to allow vertex dis-
placement.

Per vertex displacement mapping really changes the ge-
ometry, thus it can handle cases when the surface is curved,
and can provide correct silhouettes automatically, which is a
great advantage.

The problems of vertex displacement methods are as fol-
lows:

• The number of the used vertices can be very high, which
contradicts to that the aim of displacement mapping in
hardware accelerated environment is to reduce the vertex
number without losing surface detail.

• If the displacement is done on the GPU, performing
shadow computations on CPU gives either incorrect re-
sults, or takes too long because the transformed data must
be fed back to the CPU. Thus, the only way to go is
to compute shadows on the GPU, which is rather prob-
lematic if shadow volumes are used [HLHS03] and the
GPU does not have a geometry shader. Thus under Shader
Model 4 we are better off if the depth mapped shadow
method is implemented [Cro77, WSP04].

c© The Eurographics Association and Blackwell Publishing 2007.
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BIAS = 0 BIAS = 0
SCALE = 0.24 SCALE = 0.30

FPS = 620 FPS = 520

Figure 4: Vertex displacement with shading (top row). The
geometry should be finely tesselated (bottom row).

• GPUs have usually more pixel-processing power than
vertex-processing power, but the unified shader architec-
ture [Sco07] can find a good balance.

• Pixel shaders are better equipped to access textures. Older
GPUs do not allow texture access within a vertex shader.
More recent GPUs do, but the access modes are limited,
and the texture access in the vertex shader is slower than
in the fragment shader.

• The vertex shader always executes once for each vertex in
the model, but the fragment shader executes only once per
pixel on the screen. This means that in fragment shaders
the work is concentrated on nearby objects where it is
needed the most, but vertex shader solutions devote the
same effort to all parts of the geometry, even to invisible
or hardly visible parts.

3.2. Shader Model 4 outlook

Shader Model 4 has introduced a new stage in the rendering
pipeline between the vertex shader and the rasterizer unit,
called the geometry shader [Bly06]. The geometry shader
processes primitives and can create new vertices, thus it
seems to be an ideal tessellator. So it becomes possible to
implement displacement mapping in a way that the vertex
shader transforms the macrostructure surface, the geometry
shader tessellates and modulates it with the height map to
generate the mesostructure mesh, which is output to the ras-
terizer unit.

Though subdividing the meshes with the geometry shader
looks a good choice, care should be taken to implement this
idea. The number of new triangles generated by the geom-
etry shader is limited by the maximum output size, which
is currently 1024× 32 = 32768 bits. This limitation can be
overcome if the data is fed back to the geometry shader again
creating levels of subdivisions. One should take into account
that subdividing a triangle into hundreds of triangles may
give good quality results but highly reduces performance.
The number of new triangles should depend on the frequency
of the height map, and more vertices should be inserted into
areas where the height map has high variation and less de-
tailed tessellation is needed where the height map changes
smoothly. The texture and model space areas of the triangles
should also influence the number of subdivisions. The subdi-
vision algorithm should also consider the orientation of the
triangles according to the viewer as triangles perpendicular
to the view ray may not require as many subdivisions, while
faces seen at grazing angles, and especially silhouette edges
should be subdivided into more pieces.

Developing geometry shader programs that meet all the
requirements described above is not easy, and it will be an
important research area in the near future.

4. Per-pixel displacement mapping on the GPU

macrostructure 
surface

height map stored
as a texture

vertex
shader rasterization

fragment
shader

visibility
ray

processed
point

modified
visible point

pixel

Figure 5: Displacement mapping on the fragment shader

Displacement mapping can also be solved by the frag-
ment shader (figure 5). The vertex shader transforms only
the macrostructure geometry, and the surface height map is
taken into account when fragments are processed, that is,
when color texturing takes place. However, at this stage it is
too late to change the geometry, thus the visibility problem
needs to be solved in the fragment shader program by a ray-
tracing like algorithm. The task can be imagined as tracing
rays into the height field (figure 6) to obtain the texture co-
ordinates of the visible point, which are used to fetch color
and normal vector data.

The graphics pipeline processes the macrostructure geom-
etry, and the fragment shader gets one of its points associ-
ated with texture coordinates [u,v]. This processed point has
(u,v,0) coordinates in tangent space. The fragment shader
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Figure 6: Ray tracing of the height field

program should find that point of the height field which
is really seen by the ray connecting the pixel center and
processed point (u,v,0). The direction of this ray is de-
fined by tangent space view vector ~V . The visible point
is on the height field and thus has tangent space coordi-
nates (u′,v′,h(u′,v′)) for some unknown (u′,v′). This vis-
ible point is also on the ray of equation

(u′,v′,h′) = (u,v,0)+~Vt

for some ray parameter t, thus we need to solve the following
equation:

(u′,v′,h(u′,v′)) = (u,v,0)+~Vt (10)

for unknown u′,v′, t parameters.

Height function h is evaluated by fetching the texture
memory and using equation 8 to scale and bias the stored
value. If during the solution of ray equation 10 we should
read and scale texels many times, it is more efficient to sup-
pose that the height field values are in the range of [0,1] and
transform the view vector, i.e. the direction vector of the ray,
appropriately:

V ′z = (Vz−BIAS)/SCALE.

The space after this scaling is called normalized tangent
space. This transformation is often interpreted in the follow-
ing way. Let us define the ray by the processed point (u,v)
and by another tangent space point where the ray intersects
the maximum height plane. This point may be called entry
point and is given as coordinates (uin,vin,1) in normalized
tangent space since the ray enters here the volume of pos-
sible height field intersections. Similarly the tangent space
processed point, (u,v,0), on the other hand, can be consid-
ered as the exit point. With the entry and exit points the ray
segment between the minimum and maximum height planes
is

(u,v,0)(1−H)+(uin,vin,1)H, H ∈ [0,1]. (11)

In this representation height value H directly plays the role
of the ray parameter. The equation to be solved is

(u′,v′) = (u,v)(1−H)+(uin,vin)H, h(u′,v′) = H.

There are quite a few difficulties to implement per-pixel
displacement mapping:

• A larger part of the height field texture might be searched,
thus the process can be slow. To preserve speed, most of
the implementations obtain the [u′,v′] modified texture
coordinates only approximately.

• There might be several solutions of the equation, i.e. sev-
eral points (u′,v′,h(u′,v′)) of the height field that can be
projected onto the same pixel. Note that in figure 6 we can
identify three such intersections. In this case we need that
point which is the closest to the eye, i.e. has maximum t
or H. We shall call this intersection as the “first intersec-
tion” of the ray. However, looking for the “first” intersec-
tion makes the search process even more complex. Many
algorithms simply ignore this fact and obtain a solution
that might be incorrect due to occlusions.

• The new, approximate texture coordinates (u′,v′) might
fall outside the texture footprint of the given mesh, thus
invalid texels or texels belonging to other meshes might
be fetched. A possible solution is to separate textures of
different meshes by a few texel wide boundaries, fill these
boundaries by special “invalid” values, and discard the
fragment if such invalid texel is fetched.

• The fragment shader is invoked only if its corresponding
point of the simplified geometry is not back facing and
also visible in case of early z-test. Thus it can happen that
a height map point is ignored because its corresponding
point of the simplified geometry is not processed by the
fragment shader. The possibility of this error can be re-
duced if the simplified geometry encloses the detailed sur-
face, that is, the height field values are negative, but back
facing simplified polygons still pose problems.

• When the neighborhood of point (u,v,0) is searched, we
should take into account that not only the height field, but
also the underlying simplified geometry might change. In
the fragment shader we do not have access to the mesh in-
formation, therefore we simply assume that the simplified
geometry is the plane of the currently processed triangle.
Of course, this assumption fails at triangle edges, which
prohibits the correct display of the silhouette of the de-
tailed object. The local curvature information should also
be supplied with the triangles to allow the higher order
(e.g. quadratic) approximation of the smooth surface far-
ther from the processed point.

• Replacing processed point (u,v,0) by the really visible
point defined by (u′,v′,h(u′,v′)) does not change the
pixel in which the point is visible, but modifies the depth
value used to determine visibility in the z-buffer. Al-
though it is possible to change this value in the frag-
ment shader, algorithms not always do that, because such
change would have performance penalty due to the auto-
matic disabling of the early z-culling. On the other hand,
the height field modifies the geometry on a small scale,
thus ignoring the z-changes before z-buffering usually
does not create visible errors.

Per-pixel displacement mapping approaches can be
mainly categorized according to how they attack the first two
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challenges of this list, that is, whether or not they aim at ac-
curate intersection calculation and at always finding the first
intersection.

Non-iterative or single-step methods correct the texture
coordinates using just local information, thus they need only
at most one extra texture access but may provide bad results.

Iterative methods explore the height field globally thus
they can potentially find the exact intersection point but they
read the texture memory many times for each fragment. Iter-
ative techniques can be further classified to safe methods that
try to guarantee that the first intersection is found, and to un-
safe methods that may result in the second, third, etc. inter-
section point if the ray intersects the height field many times.
Since unsafe methods are much faster than safe methods it
makes sense to combine the two approaches. In combined
methods first a safe iterative method reduces the search space
to an interval where only one intersection exists, then an un-
safe method computes the accurate intersection quickly.

In the following subsections we review different fragment
shader implementations of the height field rendering.

4.1. Non-iterative methods

Non-iterative methods read the height map at the processed
point and using this local information obtain more accurate
texture coordinates, which will address the normal map and
color textures.

4.1.1. Bump mapping

normal
normal

view
light
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h

macrostructure 
surface

macrostructure 
surface

Figure 7: Bump mapping

Bump mapping [Bli78] can be seen as a strongly sim-
plified version of displacement mapping (figure 7). We in-
cluded bump mapping into this survey for the sake of com-
pleteness and to allow comparisons. If the uneven surface
has very small bumps it can be estimated as being totally
flat. In case of flat surfaces the approximated visible point
(u′,v′,h(u′,v′)) is equal to the processed point (u,v,0).
However, in order to visualize bumps, it is necessary to sim-
ulate how light affects them. The simplest way is to read the
mesostructure normal vectors from a normal map and use
these normals to perform lighting.

This technique was implemented in hardware
even before the emergence of programmable GPUs
[PAC97, Kil00, BERW97, TCRS00]. A particularly popular

FPS = 695 FPS = 690

Figure 8: Texture mapping (left) and texture mapping with
bump mapping (right).

simplification used a simple embossing trick to simulate
bump mapping for diffuse surfaces [Bli78, Sch94]. Becker
and Max extended bump mapping to account for occlusions
[BM93], and called their technique redistribution bump-
mapping. They also described how to switch between three
rendering techniques (BRDF, redistribution bump-mapping
and displacement mapping) within a single object according
to the amount of visible surface detail.

4.1.2. Parallax mapping

Taking into account the height at the processed point par-
allax mapping [KKI∗01] not only controls the shading nor-
mals as bump mapping, but also modifies the texture coordi-
nates used to obtain mesostructure normals and color data.
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Figure 9: Parallax mapping

The texture coordinates are modified assuming that the
height field is constant h(u,v) everywhere in the neighbor-
hood of (u,v). As can be seen in figure 9, the original (u,v)
texture coordinates get substituted by (u′,v′), which are
calculated from the direction of tangent space view vector
~V = (Vx,Vy,Vz) and height value h(u,v) read from a texture
at point (u,v). The assumption on a constant height surface
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simplifies the ray equation to

(u′,v′,h(u,v)) = (u,v,0)+~Vt,

which has the following solution:

(u′,v′) = (u,v)+h(u,v)
(

Vx

Vz
,
Vy

Vz

)
.

In the following implementation the tangent space view
vector is denoted by View, and texture coordinates uv of
the processed point are modified to provide the texture coor-
dinates of the approximate visible point:

float h = tex2D(hMap, uv).a * SCALE + BIAS;
uv += h * View.xy / View.z;

FPS = 695 FPS = 675

Figure 10: Comparison of bump mapping (left) and parallax
mapping (right) setting BIAS =−0.06 and SCALE = 0.08.

Figure 10 compares bump mapping and parallax mapping.
Note that at almost the same speed, parallax mapping pro-
vides more plausible bumps. However, parallax mapping in
its original form has a significant flaw. As the viewing an-
gle becomes more grazing, offset values approach infinity.
When offset values become large, the odds of (u′,v′) index-
ing a similar height to that of (u,v) fade away, and the result
seems to be random. This problem can reduce surfaces with
complex height patterns to a shimmering mess of pixels that
do not look anything like the original texture map.

4.1.3. Parallax mapping with offset limiting

(u,v)

N

T, B

h

(u’,v’)macrostructure 
surface

constant height 
surface

V

Figure 11: Parallax mapping with offset limiting

A simple way to solve the problem of parallax mapping
at grazing angles is to limit the offsets so that they never
get larger than the height at (u,v) [Wel04]. Asssuming the
view vector to be normalized, and examining parallax offset
h(u,v)(Vx/Vz,Vy/Vz), we can conclude that

• When the surface is seen at grazing angles and thus Vz ¿
Vx,Vy, then offset limiting takes into effect, and the offset
becomes h(u,v)(Vx,Vy).

• When the surface is seen from a roughly perpendicu-
lar direction and thus Vz ≈ 1, then the offset is again
h(u,v)(Vx,Vy) without any offset limiting.

Thus offset limiting can be implemented if the division by Vz
is eliminated, which makes the implementation even simpler
than that of the original parallax mapping. However, elimi-
nating the division by Vz even when Vz is large causes the
“swimming” of the texture, that is, the texture appears to
slide over the surface.

Since parallax mapping is an approximation, any limiting
value could be chosen, but this one works well enough and
it reduces the code in the fragment program by two instruc-
tions. The implementation of offset limiting is as follows:

View = normalize(View);
float h = tex2D(hMap, uv).a * SCALE + BIAS;
uv += h * View.xy;

Note that offset limiting requires that the tangent space
view is normalized. Since view vector normalization is usu-
ally needed for illumination as well, this requirement has no
additional cost. Figure 12 demonstrates that offset limiting
can indeed reduce the errors at grazing angles.

FPS = 675 FPS = 680

Figure 12: Comparison of parallax mapping (left) and par-
allax mapping with offset limiting (right) setting BIAS =
−0.14 and SCALE = 0.16.

4.1.4. Parallax mapping taking into account the slope

Parallax mapping assumes that the surface is a constant
height plane. A better approximation can be obtained if we
assume that the surface is still planar, but its normal vector
can be arbitrary (i.e. this surface is not necessarily parallel
with the macrostructure surface). The normal of the approx-
imating plane can be taken as the normal vector read from
the normal map, thus this approach does not require any fur-
ther texture lookups [MM05].

A place vector of the approximating plane is (u,v,h(u,v)).
The normal vector of this plane is the shading normal
~N′(u,v) read from the normal map at (u,v). Substituting the
ray equation into the equation of the approximating plane,
we get

~N′ · ((u,v,0)+~Vt) = ~N′ · (u,v,h). (12)
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Figure 13: Parallax mapping taking into account the slope

Expressing ray parameter t and then the (u′,v′) coordinates
of the intersection, we obtain

(u′,v′) = (u,v)+h
N′z

(~N′ ·~V )
(Vx,Vy).

As we pointed out in the section on offset limiting, if (~N′ ·~V )
is small, the offset may be too big, so we should rather use a
“safer” modification:

(u′,v′)≈ (u,v)+hN′z(Vx,Vy).

The fragment shader implementation is as follows:

View = normalize(View);
float4 Normal = tex2D(hMap, uv);
float h = Normal.a * SCALE + BIAS;
uv += h * Normal.z * View.xy;

FPS = 675 FPS = 680

Figure 14: Comparison of parallax mapping with offset lim-
iting (left) and parallax mapping with slope information
(right) using BIAS =−0.04 and SCALE = 0.12.

This is as simple as the original parallax mapping, but pro-
vides much better results (figure 14).

4.2. Unsafe iterative methods

Iterative methods explore the height field globally to find the
intersection between the ray and the height field. In the fol-
lowing subsections we review unsafe methods that obtain an
intersection but not necessarily the first one, i.e. the one that
is the closest to the eye.

4.2.1. Iterative parallax mapping

Parallax mapping makes an attempt to offset the texture co-
ordinates toward the really seen height field point. Of course,
with a single attempt perfect results cannot be expected. The

accuracy of the solution, however, can be improved by re-
peating the correction step by a few (say 3–4) times [Pre06].

After an attempt we get an approximation of the intersec-
tion (ui,vi,Hi) that is on the ray. Substituting this into the
ray equation, we get

~N′ · ((ui,vi,Hi)+~V ∆t) = ~N′ · (ui,vi,h(ui,vi)).

Solving it for the updated approximation, and ignoring the
division with (~N′ ·~V ′), the iteration formula is

(ui+1,vi+1,Hi+1)≈ (ui,vi,hi)+(h(ui,vi)−Hi)N
′
z~V .

The fragment shader of the iterative parallax mapping is
similar to that of the parallax mapping with slope informa-
tion, but here we use a three dimensional tangent space point
uvh that contains not only the texture coordinates but also
the current height on the ray:

View = normalize(View);
for(int i = 0; i < PAR_ITER; i++) {

float4 Normal = tex2D(hMap, uvh.xy);
float h = Normal.a * SCALE + BIAS;
uvh += (h - uvh.z) * Normal.z * View;

}

FPS = 600 FPS = 570

Figure 15: Comparison of parallax mapping with slope
(left) and iterative parallax mapping (right) setting BIAS =
−0.04, SCALE = 0.12, and PAR_ITER= 2.

Iterative parallax mapping is a fast but unsafe method.
This method cannot guarantee that the found intersection
point is the closest to the camera (in extreme cases not even
the convergence is guaranteed). However, in many practical
cases it is still worth using since it can cheaply but signifi-
cantly improve parallax mapping (figure 15).

4.2.2. Binary search

Suppose we have two guesses on the ray that enclose the real
intersection point since one guess is above while the other is
below the height field. Considering the ray equation of form
(u,v,0)(1−H)+ (uin,vin,1)H, points on the minimum and
maximum height values, i.e. points defined by height param-
eters Hmin = 0 and Hmax = 1, surely meet this requirement.

Binary search halves the interval (Hmin,Hmax) containing
the intersection in each iteration step putting the next guess
at the middle of the current interval [POC05, PO05]. Com-
paring the height of this guess and the height field, we can
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Figure 16: Binary search that stops at point 5

decide whether or not the middle point is below the surface.
Then we keep that half interval where one endpoint is above
while the other is below the height field.

In the following implementation the texture coordinates at
the entry and exit points are denoted by uvin and uvout,
respectively, and the height values at the two endpoints of
the current interval are Hmin and Hmax.

float2 uv; // texture coords of intersection
for (int i = 0; i < BIN_ITER; i++) {

H = (Hmin + Hmax)/2; // middle
uv = uvin * H + uvout * (1-H);
float h = tex2D(hMap, uv).a;
if (H <= h) Hmin = H; // below
else Hmax = H; // above

}

Figure 17: Binary search using 5 iteration steps. The ren-
dering speed is 455 FPS.

The binary search procedure quickly converges to an in-
tersection but may not result in the first intersection that has
the maximum height value (figure 17).

4.2.3. Secant method

Binary search simply halves the interval potentially contain-
ing the intersection point without taking into account the
underlying geometry. The secant method [YJ04, RSP06] on
the other hand, assumes that the surface is planar between
the two guesses and computes the intersection between the
planar surface and the ray. It means that if the surface were
really a plane between the first two candidate points, this
intersection point could be obtained at once. The height
field is checked at the intersection point and one endpoint
of the current interval is replaced keeping always a pair of

end points where one end is above while the other is be-
low the height field. As has been pointed out in [SKALP05]
the name “secant” is not precise from mathematical point of
view since the secant method in mathematics always keeps
the last two guesses and does not care of having a pair of
points that enclose the intersection. Mathematically the root
finding scheme used in displacement mapping is equivalent
to the false position method. We note that it would be worth
checking the real secant algorithm as well, which almost al-
ways converges faster than the false position method, but un-
fortunately, its convergence is not guaranteed in all cases.
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Figure 18: The secant method

To discuss the implementation of the secant method, let
us consider the last two points of the linear search, point
~b that is below the height field, and ~a that is the last point
which is above the height field. Points~b and~a are associated
with height parameters Hb and Ha, respectively. The level
differences between the points on the ray and the height field
at ~a and~b are denoted by ∆a and ∆b, respectively (note that
∆a ≥ 0 and ∆b < 0 hold). Figure 18 depicts these points in
the plane containing viewing vector~V . We wish to obtain the
intersection point of the view ray and of the line between the
points on the height field just above ~a and below~b.

Using figure 18 and the simple similarity, the ray parame-
ter of the intersection point is

Hnew = Hb +(Ha−Hb)
∆a

∆a−∆b
.

Note that we should use ∆b with negative sign since ∆b
means a signed distance and it is negative.

Checking the height here again, the new point may be ei-
ther above or below the height field. Replacing the previous
point of the same type with the new point, the same proce-
dure can be repeated iteratively.

The secant algorithm is as follows:

for (int i = 0; i < SEC_ITER; i++) {
H = Hb + (Ha-Hb) /(Da-Db) * Da;
float2 uv = uvin * H + uvout * (1-H);
D = H - tex2D(hMap, uv).a ;
if (D < 0) {

Db = D; Hb = H;
} else {

Da = D; Ha = H;
}

}
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4.3. Safe iterative methods

Safe methods pay attention to finding the first intersection
even if the ray intersects the height field several times. The
first algorithm of this section, called linear search is only
“quasi-safe”. If the steps are larger than the texel size, this
algorithm may still fail, but its probability is low. Other tech-
niques, such as the dilation-erosion map, the sphere, cone,
and pyramidal mapping are safe, but require preprocessing
that generates data encoding the empty spaces in the height
field. Note that safe methods guarantee that they do not skip
the first intersection, but cannot guarantee that the intersec-
tion is precisely located if the number of iterations is limited.

4.3.1. Linear search

Linear search, i.e. ray-marching finds a pair of points on the
ray that enclose the possibly first intersection, taking steps of
the same length on the ray between the entry and exit points
(figure 19). Ray marching is an old method of rendering 3D
volumetric data [Lev90].
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Figure 19: Linear search that stops at point 3

If the number of steps between the entry and exit points is
LIN_ITER, then at a single step the height parameter of the
ray, H, is decreased by 1/LIN_ITER. At each visited point
on the ray, the algorithm checks whether or not the point
is below the height field. If it is below, then an intersection
must exist between the last and the current visited points,
thus the linear search can be stopped. Denoting the normal-
ized tangent space entry point by uvin and the exit point by
uvout, the implementation of the linear search phase is as
follows:

float H = 1.0; // current height
float Hint = 0.0 // height of intersection
for (int i = 0; i < LIN_ITER; i++){

H -= 1.0f / LIN_ITER;
uv = uvin * H + uvout * (1-H);
float h = tex2D(hMap, uv).a;
if (Hint == 0) // if no point below yet

if (H <= h) Hint = H; // below
}
// texture coords of intersection
uv = uvin * Hint + uvout * (1-Hint);

Note that this algorithm always iterates through the ray
between the entry and exit points but stores only the first ray
parameter where the ray got below the height field. Contin-
uing the search after finding the first point is not necessary

from algorithmic point of view, but GPUs prefer loops of
constant number of cycles.

FPS = 410 FPS = 340
LIN_ITER = 4 LIN_ITER = 8

Figure 20: Linear search. Note the stair-stepping artifacts.

Linear search was used alone in Steep parallax map-
ping [MM05], and as a first pass of combined methods like
Relief mapping [POC05] and Parallax occlusion mapping
[BT04, Tat06b]. Using linear search alone results in stair-
stepping artifacts unless the steps are very fine (figure 20).
Tatarchuk [Tat06b] solved this problem by adding just a sin-
gle secant step to a fine linear search. Note that linear search
cannot guarantee that no intersection is missed if its steps
may skip texels of the height field. The robustness of the al-
gorithm can be increased by making smaller steps, of course,
for the price of higher rendering times.

Brawley and Tatarchuk [BT04] noticed that it is worth
increasing the number of iteration steps at oblique angles
[MM05, Tat06a]. Making the iteration number dependent
on the actual pixel requires a dynamic loop supported by
Shader Model 3 or higher GPUs. Direct3D 9 instructions
computing derivatives, like tex2D, force the HLSL com-
piler to unroll the loop. To avoid unrolling, we can use
function tex2Dlod setting the mip-map level explicitly to
zero or tex2Dgrad with explicitly given derivative values
[San05].

To make linear search really safe each texel needs to be
visited, which is slow if the texture resolution is high. Safe
displacement mapping algorithms discussed in the following
subsections all target this problem by using some additional
data structure encoding empty spaces. Such additional data
structures require preprocessing but can always specify the
size of step the algorithm may safely take along the ray.

4.3.2. Dilation and erosion maps

Kolb and Rezk-Salama proposed a preprocessing based ap-
proach that creates two additional 2D maps with a dilation
and erosion process of the original height map [KRS05].
These maps store the minimum-filtered and the maximum-
filtered versions of the displacement map specifying a safety
zone. These zones are used for empty space skipping to find
valid ray sections containing all ray surface intersections.
Dilation-erosion maps encode the non-empty space by tan-
gent space axis aligned bounding boxes.
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4.3.3. Pyramidal displacement mapping

Pyramidal displacement mapping encodes empty spaces in a
mip-map like hierarchical scheme. This idea was mentioned
in [MM05], relates to dilation and erosion maps as well since
the space is subdivided by boxes, and was fully elaborated
in [OK06].

A pyramidal displacement map is a quadtree image pyra-
mid. Each leaf texel at the lowest level of the mip-map in-
dicates the difference between the maximum height surface
and the current height at the given texel. The root texel of
the top mip-map level, on the other hand, denotes the global,
minimum difference. This difference is denoted by d0 in fig-
ure 21. Each texel in the inner levels stores the local min-
imum difference (d1 in figure 21) of the four children. The
image pyramid can be computed on the CPU and on the GPU
as well.
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Figure 21: Pyramidal displacement mapping

The intersection search starts at the highest level of the
pyramidal texture. The top level difference is read. This dis-
tance can be safely stepped with height ray parameter H
of equation 11 without risking any intersections with the
height field. After this step a new sample point is given on
the ray. At this point the minimum difference of the next
mip-map level is fetched, and the same step is repeated itera-
tively. When we reach the lowest level, the intersection point
is obtained. This algorithm also skips box shaped empty
spaces represented by the difference of two subsequent mip-
map levels. Note, however, that higher level decisions may
get invalid if at a lower level the ray leaves the box below
the higher level texel. For example, in figure 21 when the
ray crosses the vertical line representing the first level texel
boundary, then the decision that the ray height can be de-
creased by d1 becomes wrong. Such ray crosses should be
detected, and when they occur, the hierarchy traversal should
be backtracked and continued with the higher level texel
above the crossing ray. Unfortunately, this process makes the
otherwise elegant algorithm quite complicated to implement.

4.3.4. Sphere tracing

Sphere tracing was introduced in [Har93] to ray trace im-
plicit surfaces and applied to height field ray tracing in
[Don05]. It uses a distance map and an iterative algorithm
in order to always find the first hit. A distance map is a 3D
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Figure 22: Displacement mapping with sphere tracing

texture that is precomputed from the height field sample of
the surface. The 3D texture is best to think of as an axis-
aligned bounding box of the bumpy surface patch. Texels
of the texture correspond to 3D points. The value stored in
the texel is the distance from the corresponding point to the
closest point on the bumpy surface. This distance can also
be interpreted as the radius of the largest sphere centered at
the corresponding point, that does not intersect, only touches
the height field (figure 22). This property explains the name
of the method.

In order to find the first intersection of the ray and the
height field, we make safe steps on the ray. When we are at
tangent space point uvh on the ray, we can safely step with
the distance stored in the distance map at this point, not risk-
ing that a hill of the height field is jumped over. The distance
map is fed to the fragment shader as a monochromatic, 3D
texture distField:

float3 uvh = float3(uvin, 1);
for (int i = 0; i < SPHERE_ITER; i++) {

float Dist = tex3D(distField, uvh);
uvh -= Dist * View;

}

depths = 32 depths = 64
FPS = 460 FPS = 460

Figure 23: Sphere tracing results with different distance
field texture resolutions. The left image was rendered with
a 3D texture of 32 depth layers, while the right image with
64 depth layers.

Sphere tracing results obtained with different resolution
distance maps are shown by figure 23. The 3D distance field
texture data may be generated by the Danielsson’s algorithm
[Dan80, Don05]. The distance field generation is quite time
consuming. It is worth preparing it only once and storing the
result in a file.
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4.3.5. Cone stepping

Sphere tracing uses a 3D texture map to represent empty
spaces, which poses storage problems, and does not natu-
rally fit to the concept of height fields stored as 2D textures.
Based on these observations, cone tracing [Dum06] aims to
encode empty spaces by a 2D texture having the same struc-
ture as the original height map.
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Figure 24: Displacement mapping with cone stepping

In cone tracing every height field texel is given a cone that
represents the empty space above it (figure 24). The tip of the
cone is the heightfield surface at that texel, its axis is parallel
to axis z in tangent space, thus the only parameter that needs
to be stored to define the cone is its apex angle or the slope
of its boundary.

Suppose that the current approximation on the ray is
(u,v,0) +~Vti = (ui,vi,Hi). The height at this point is hi =
h(ui,vi). The next approximation,

(ui,vi,Hi)−~V ∆ti = (ui+1,vi+1,Hi+1),

is calculated as the intersection of this ray and the cone
standing at (ui,vi,hi). The equation of the cone standing at
the height field is

(u′−ui)
2 +(v′− vi)

2 = m2(h′−hi)
2,

where m equals to the ratio of the cone radius and height,
and expresses the apex angle of the cone. Substituting the
ray equation into the equation of this cone we obtain

(V 2
x +V 2

y )∆t2
i = m2(Hi−Vz∆ti−hi)

2.

Solving it for unknown step ∆ti, we get

∆ti =
m(Hi−hi)√

V 2
x +V 2

y +mVz

The following shader code uses a 2D map, ConeMap, that
stores the displacement height values in its red channel and
the cone radius per height parameter in its green channel:

float3 uvh = float3(uvin, 1);
float lViewxy = length(View.xy);
for (int i = 0; i < CONE_ITER; i++) {

float h = tex2D(ConeMap, uvh.xy).r;
float m = tex2D(ConeMap, uvh.xy).g;
float dts = m/(lViewxy + m * View.z);
float dt = (uvh.z - h) * dts;
uvh -= View * dt;

}

CONE_ITER = 5 CONE_ITER = 30
FPS = 380 FPS = 150

Figure 25: Cone stepping results with different iteration
count setting BIAS = 0.7 and SCALE = 0.3.

Images rendered with cone stepping are shown by fig-
ure 25.

4.4. Combined iterative methods

Combined iterative methods combine a safe or quasi-safe
technique to provide robustness and an unsafe method that
is responsible for finding the intersection quickly. The safe
method should only find a rough approximation of the first
intersection and should make sure that from this approxi-
mation the unsafe method cannot fail. Table 1 lists iterative
displacement mapping methods together with their first ref-
erence. The columns correspond to the safe phase, while the
rows to the unsafe phase. Methods where a particular phase
is missing are shown in the “NO” row or column. Combined
methods belong to cells where both phases are defined.

4.4.1. Relief mapping

The pixel shader implementation [POC05, PO05] of relief
mapping [OBM00, Oli00] uses a two phase root-finding ap-
proach to locate the intersection of the height field and the
ray. The first phase is a linear search, i.e. ray-marching,
which finds a pair of points on the ray that enclose the possi-
bly first intersection. The second phase refines these approx-
imations by a binary search (figure 26).

SCALE = 0.32 SCALE = 0.16
FPS = 110 FPS = 80

Figure 26: Relief mapping results (LIN_ITER= 32 and
BIN_ITER= 4)
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Ray marching Empty-space encoding NO

Binary Relief mapping [POC05] Relaxed cone [PO07]

Secant
DM with ray casting [YJ04]
Parallax Occlusion [BT04]
Interval mapping [RSP06]

Slope Iterative parallax[Pre06]

NO Steep parallax [MM05]

Sphere tracing [Don05]
Erosion-dilation map [KRS05]
Pyramidal DM [OK06]
Cone stepping [Dum06]

Table 1: Classification of iterative displacement mapping (DM) methods. The columns correspond to the first phase (if any)
while rows correspond to the second phase.

4.4.2. Combined linear and secant search

Ray marching can also be improved combined with a series
of geometric intersections, according to the secant method.
The first pass of these algorithms is also a linear search.
This kind of combined approach was first proposed by Yerex
[YJ04] and independently in Parallax Occlusion Mapping
[BT04, Tat06a, Tat06b], and showed up in Interval mapping
[RSP06] too.

The ratio of the number of linear search steps and the
number of refinement steps using either binary search or
the secant method should be selected carefully. Taking more
linear search steps increases robustness, and we should also
take into account that a linear search step is executed faster
by the graphics hardware. The reason is that the texture co-
ordinates of linear search steps do not depend on the results
of previous texture fetches unlike the texture coordinates ob-
tained by binary search or by the secant method, which do
depend on the values stored in textures. This dependency is
often referred to as dependent texture fetching, and results in
poorer texture cache utilization and therefore longer latency.
It means that the number of secant steps should be small. In
practice 1–2 secant steps are sufficient (figure 27).

FPS = 310 FPS = 225
LIN_ITER = 4 LIN_ITER = 8
SEC_ITER = 2 SEC_ITER = 1

Figure 27: Combined linear and secant search

We mention that two phase search processes, including
a linear search phase and a secant search phase have also
proven to be successful in tasks that are independent of dis-

placement mapping, for example in curved reflection com-
putation [UPSK07] and isosurface extraction of volumetric
data [HSS∗05].

4.4.3. Relaxed Cone Stepping

N

macrostructure 
surface

relaxed
cone

max level
surface

conservative
cone

Figure 28: Difference between conservative and relaxed
cones used in cone stepping

Cone stepping defines a cone with a maximum angle that
would not cause the cone to intersect the height field for each
texel of the displacement map. This strict rule will cause the
rays to stop before reaching the surface, which leads to er-
rors and artifacts if the iteration number is limited. Relaxed
cone stepping relaxes this rule and defines the cones with the
maximum angle that would not cause the view ray to inter-
sect the height field more than once [PO07].

N

macrostructure 
surface

max level
surface

H i-1

(u    ,v   )(u ,v ) i-1i i i-1

Hi

Figure 29: Relaxed cone stepping

The intersection search algorithm will be the same as in
the case of the original cone stepping algorithm. The final
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two search results will give an undershooting and an over-
shooting points. From these points binary [PO07] or secant
search can be started to find the exact solution.

5. Silhouette processing

So far we have discussed algorithms that compute the tex-
ture coordinates of the visible point assuming a planar
macrostructure surface. For triangle meshes, the underly-
ing macrostructure geometry might change and the modified
texture coordinates get outside of the texture footprint of the
polygon, thus the texture coordinate modification computed
with the planar assumption may become invalid. Another
problem is that the mesostructure surface may get projected
to more pixels than the macrostructure surface, but the frag-
ment shader is invoked only if the macrostructure triangle
passes the backface culling, its processed point is projected
onto this pixel and passes the early z-test. Thus it can happen
that a height map point is ignored because its corresponding
point of the macrostructure geometry is not processed by the
fragment shader. These issues are particularly important at
triangle edges between a front facing and a back facing poly-
gons, which are responsible for the silhouettes of the detailed
object.

To cope with this problem, a simple silhouette processing
approach would discard the fragment if the modified tex-
ture coordinate gets outside of texture space of the rendered
polygon. While this is easy to test for rectangles, the check
becomes more complicated for triangles, and is not robust
for meshes that are tessellations of curved surfaces.

For meshes, instead of assuming a planar surface, i.e. a
linear approximation, the local curvature information should
also be considered, and at least a quadratic approximation
should be used to describe the surface farther from the pro-
cessed point. On the other hand, to activate the fragment
shader even for those pixels where the mesostructure sur-
face is visible but the macrostructure surface is not, the
macrostructure surface should be “thickened” to include also
the volume of the height field above it. Of course, the thick-
ened macrostructure surface must also be simple, otherwise
the advantages of displacement mapping get lost. Such ap-
proaches are discussed in this section.

5.1. Silhouette processing for curved surfaces

In order to get better silhouettes, we have to locally deform
the height field according to the curvature of the smooth ge-
ometry [OP05]. The mesostructure geometry~r(u,v) is usu-
ally approximated locally by a quadrics [SYL02] in tangent
space (compare this second order approximation to the first
order approximation of equation 3):

~r(u,v)≈~q(u,v) =~r(u0,v0)+ [u−u0,v− v0] ·




∂~r
∂u

∂~r
∂v


+

1
2
· [u−u0,v− v0] ·




∂2~r
∂u2

∂2~r
∂u∂v

∂2~r
∂u∂v

∂2~r
∂v2


 ·

[
u−u0
v− v0

]
.

where all partial derivatives are evaluated at (u0,v0). If
(u0,v0) corresponds to a vertex of the tessellated mesh, then

~r(u0,v0) = ~p(u0,v0),
∂~r
∂u

= ~T ,
∂~r
∂v

= ~B.

Matrix

H =




∂2~r
∂u2

∂2~r
∂u∂v

∂2~r
∂u∂v

∂2~r
∂v2




is a Hessian matrix. The eigenvalues of this matrix corre-
spond to the principal curvatures and the eigenvectors to the
principal curvature directions.

The second order approximation is the sum of the lin-
ear form represented by the macrostructure mesh and a
quadratic form

~q(u,v)≈ ~p(u,v)+
1
2
· [u−u0,v− v0] ·H · [u−u0,v− v0]

T .

Let us transform this quadratic surface to tangent space,
and consider only the third coordinate hq representing the
height function of the quadratic surface:

hq(u,v) = (~q(u,v)−~p(u,v)) ·~N0 =

a(u−u0)
2 +b(u−u0)(v− v0)+ c(v− v0)

2. (13)

The elements of the Hessian matrix and parameters a,b,c
can be computed analytically if the parametric equation of
that surface which has been tessellated is known (this is the
case if we tessellate a sphere, a cylinder, etc.). If only the tes-
sellated surface is available, then the derivatives should be
determined directly from the mesh around vertex ~p0. Let us
suppose that the vertices of the triangles incident to ~p0 are
(u0,v0,h0),(u1,v1,h1), . . . ,(un,vn,hn) in the tangent space
attached to ~p0. Substituting these points to the quadratic ap-
proximation we obtain for i = 1, . . . ,n

hi ≈ a(ui−u0)
2 +b(ui−u0)(vi− v0)+ c(vi− v0)

2.

since h0 = 0 in the tangent space of ~p0. This is a linear sys-
tem

e = A ·x,

where e = [h1, . . . ,hn]T is an n-element vector,

A =




(u1−u0)2, (u1−u0)(v1− v0), (v1− v0)2

...
...

...
(un−u0)2, (un−u0)(vn− v0), (vn− v0)2
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is an n-row, 3-column matrix, and

x =




a
b
c


 .

is a three-element vector. Note that the number of equations
is n > 3 and just three unknowns exist, thus the equation
is overdetermined. An approximate solution with minimal
least-squares error can be obtained with the pseudo inverse
method:

x = (AT ·A)−1 ·AT · e.

Note that just a 3×3 matrix needs to be inverted.

Having determined parameters a,b,c the height of the
quadratic approximation of the smooth surface is obtained
using equation 13.

(u,v)

N

h

Original tangent space

(u,v)

N

T, B

Warped tangent space

ray

ray

Figure 30: Silhouette processing with tangent space warp-
ing

The height function of the bumpy surface is approxi-
mately hq(u,v) + h(u,v). Note that this is only an approx-
imation since we should have moved the height into the di-
rection of the normal vector of the quadratic surface, which
is not constant any more. However, for smaller curvatures,
this approximation is acceptable. To make sure that the ras-
terizer does not miss fragments, h(u,v) must be negative.

The ray tracing scenario is shown by figure 30. In order
to trace back this problem to the previous ones where the
macrostructure surface is flat, let us apply a non-linear warp-
ing to the whole space, which flattens the quadratic surface
to a plane. The required warping at (u,v) is −hq(u,v). This
warping transforms the ray as well, so the original ray equa-
tion ray(t) = (u,v,0)−~Vt is modified to

ray′(t) = (u,v,0)− t~V −hq(u−Vxt,v−Vyt) =

(u,v,0)− t~V − t2~N(aV 2
x +bVxVy + cV 2

y ).

It means that we can use ray marching, but the steps should
be updated according to this formula. When the z coordinate
of the ray gets negative, it leaves the space of possible inter-
sections. If we have not found any intersection so far, then
this fragment should be discarded.

5.2. Thick surfaces

To activate the fragment shader even for those pixels where
the mesostructure surface is visible but the macrostructure
surface is not, the macrostructure surface is thickened and
each triangle is handled like a three-dimensional volume that
includes the height field. The geometric representation of
these volumes can be kept simple if we represent them by
the boundary surfaces of their bounding volumes. A par-
ticularly popular and effective choice is the prism shaped
bounding volume of the mesostructure surface above each
macrostructure triangle. The prism is obtained by extruding
the base triangle along the vertex normals with the maximum
height. Each prism is rendered by sending its eight face tri-
angles through the pipeline. Since these prisms include the
height field, rasterizing the face triangles guarantees that the
fragment shader is activated for all pixels in which the height
field is visible.

Figure 31: Sampling within the extruded prism with a slice
of the displacement map

In Hirche’s local ray tracing method [HEGD04] during
the rasterization of the prism faces ray marching is used to
detect an intersection with the displaced surface. At each
sample point on the ray, the height of the sampling position
is compared to the height field (figure 31). If an intersection
is detected, the resulting fragment is shaded, its depth is re-
evaluated, and the fragment is written into the framebuffer
with its correct z-value. The original algorithm executed the
prism construction on the CPU, but in Shader Model 4 GPUs
the geometry shader can also do that. The ray segment where
the marching algorithm should run is bounded by the points
where the ray enters and exits the prism. The entry posi-
tion is given by rasterization, but the computation of the exit
point is not so straightforward. Hirche used an adaptation of
the Projected tetrahedra algorithm by Shirley and Tuchman
[ST90], while Wang et al. [WTL∗04] computed ray-plane
intersections for the current view ray to find the exit point.

Another problem that can occur while extruding prisms
is that the vertices defining one side of the prism are not
necessary coplanar. This can cause problems if two adjacent
prisms split their neighboring sides differently into two trian-
gles, which can lead to cracks. This problem can be solved
with the correct ordering of the new vertices of the prism
faces.
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Dufort et al. used a voxel traversal algorithm inside the
bounding prism [DLP05]. This method can simulate dis-
placement maps as well as semitransparent surface details,
including several surface shading effects (visual masking,
self-shadowing, absorption of light) at interactive rates.

The idea of mapping a three-dimensional volume onto a
surface with prisms also showed up in shell maps [PBFJ05].

5.2.1. Shader Model 4 adaptation of the local ray
tracing method

The displacement techniques using bounding prisms can be
implemented purely in hardware with the geometry shader
announced in Shader Model 4. One possible Diret3D 10 im-
plementation can be found in the DirectX SDK 2006 August.

The prism extrusion and the ray exit point calculation are
done in the geometry shader. The geometry shader reads the
triangle data (three vertices) and creates additional triangles
forming a prism with edge extrusion. It splits the prism into
three tetrahedra just like in [HEGD04]. For each vertex of a
tetrahedron, the distance from the “rear” of the tetrahedron is
computed. Then the triangles with these additional data are
passed to the clipping and rasterizer units. From the raster-
izer the fragment shader gets the entry point and its texture
coordinate, as well as the exit point and its texture coordi-
nates, which are interpolated by the rasterizer from the dis-
tance values computed by the geometry shader.

Figure 32: Displacement mapping with local ray tracing im-
plemented on the geometry shader of a NVidia 8800 GPU
and rendered at 200 FPS

Figure 32 has been rendered with this algorithm on a
Shader Model 4 compatible GPU.

6. Self-shadowing computation

Self-shadowing can be easily added to iterative fragment
shader methods. By calling it with the Light vector (point-
ing from the shaded point to the light source) instead of the
View vector, it is possible to decide whether the shaded point

is in shadow or not (figure 33). Using more than one light
vector per light source, even soft shadows can be generated
[Tat06a, Tat06b].

FPS = 100 FPS = 50

FPS = 60 FPS = 30

FPS = 85 FPS = 42

Figure 33: The secant method without (left) and with self-
shadowing (right) setting LIN_ITER = 32, SEC_ITER = 4

We note that shadows can also be burnt into the in-
formation associated with the texels, as happens in the
case of bi-directional texture functions. Bi-directional tex-
ture functions have been introduced by Dana et al.
[DGNK97, SBLD03, MGW01, HDKS00]. An excellent re-
view of the acquisition, synthesis, and rendering of bi-
directional texture functions can be found in [MMS∗04].

6.1. Horizon mapping

Another fast method for self-shadowing computation is hori-
zon mapping [Max88]. The idea behind horizon mapping is
to precompute the angle to the horizon in a discrete number
of directions. Horizon angles represent at what height the
sky becomes visible at the given direction (i.e. passes over
the horizon). This parametrization can be used to produce
the self-shadowing of geometry. An extension of this algo-
rithm also considered the local geometry [SC00].
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6.2. Displacement mapping with precomputed visibility

Heidrich et al. introduced a method similar to horizon map-
ping [HDKS00], but instead of storing zenith angles, they
stored the visible points at predefined directions. If we as-
sume that the height map is attached to a specific, fixed base
geometry, we can precompute for each point on the height
field and for each discrete direction the point which is hit
by this ray. Since this intersection point is some point in the
same height field, it is unambiguously characterized by a 2D
texture coordinate. By chaining together this visibility infor-
mation, we can also generate a multitude of different light
paths for computing the indirect illumination in the height
field.

To determine if a given point lies in the shadow for some
light direction, we can simply find the closest direction and
check whether a height field point is stored for this ray. For a
higher quality test, we can easily determine the three direc-
tions that are close to the light direction, and then interpolate
the visibility values. This yields a visibility factor between 0
and 1 defining a smooth transition between light and shadow.

6.3. View dependent displacement mapping

View dependent displacement mapping [WWT∗04] also
takes a pre-computation approach. While this method pro-
vides the highest quality results, handles shadows and
curved surfaces as well, it also requires considerable prepro-
cessing time and storage space.

This method takes pre-defined view rays and computes
the difference of the base surface and the visible point for
each texel and for each view ray. To handle curved surfaces,
this operation is repeated for a couple of curvature values
defined along the view ray.

The results of this precomputation is a 5D function called
View dependent displacement map (VDM), which can be in-
terpreted as an array of distances dV DM [u,v,θ,φ,c]. Indices
of this array are the u,v texture coordinates, the θ,φ spher-
ical coordinates of the view direction in tangent frame, and
curvature c along the view direction.

When a texel (u,v) is processed, first the curvature of the
mean surface along the view direction is determined:

c =
cmax(~Dmax ·~V )2 + cmin(~Dmin ·~V )2

1− (~N ·~V )2

where cmax and cmin are the principal curvature values cor-
responding to principal curvature directions ~Dmax and ~Dmin,
respectively. The θ,φ values can be obtained from viewing
vector ~V . Having these, the new texture coordinates are

(u′,v′) = (u,v)+dV DM [u,v,θ,φ,c](Vx,Vy).

In order to cope with the high storage requirements, singular
value decomposition can be used to compress the 5D func-
tion and replace it by lower dimensional tables.

In [WD05] a compression method is presented that com-
bines k-means clustering and non-negative matrix factoriza-
tion. Wang et al. introduced an extension of View depen-
dent displacement maps, called Generalized displacement
maps (GDM) [WTL∗04]. This method can model surfaces
with more than one offset value per texel, thus arbitrary non-
height-field mesostructure. Furthermore, the GDM approach
overcomes both the texture distortion problems of VDM
and the computational expense of directly mapped geometry
by computing visibility jointly in texture space and object
space.

7. Conclusions

In this paper we reviewed vertex shader and fragment shader
solutions of displacement mapping. Their comparative ad-
vantages and disadvantages depend on the properties of the
scene, including the number of triangles that are subject to
displacement mapping and the number of pixels covered by
them.

The complexity, i.e. the rendering time, of vertex shader
based approaches depends on the number of triangles gen-
erated by displacement mapping. This number corresponds
to the resolution of the height map. A 256× 256 resolution
height map generates 128 thousand triangles when mapped
onto an object. Thus if there are many objects in the scene
(including those that are not even visible and are eliminated
by the graphics pipeline) and we use high resolution height
maps, then vertex shader methods get slower. To compen-
sate this, view and visibility culling [WB05] is worth using
and we should not send the surely invisible objects to the
rendering pipeline. On the other hand, level of detail tech-
niques may be introduced. We may maintain several ver-
sions of the same height field (mip-mapping) and of the same
object tessellated on different levels, and render one object
and mip-map level corresponding to the distance from the
camera. Note that this decision and the level of detail se-
lection must be done by the CPU, because the GPU cannot
alter the tessellation level (this changes from Shader Model
4). It is widely believed that vertex shader approaches are
slower than fragment shader approaches since GPUs have
more pixel-processing power than vertex-processing power,
and pixel shaders are better equipped to access textures. Ac-
cording to our tests, however, this is not the case anymore.
We think that this belief was born when the vertex shaders
were not able to read textures, but those times are gone.

Per vertex displacement mapping really changes the ge-
ometry, thus it can handle cases curved surfaces and can
provide correct silhouettes automatically. They can be seam-
lessly incorporated into depth mapped shadow algorithms,
but shadow volumes require geometry shader or complicated
vertex shader approaches. Vertex shader solutions are rela-
tively easy to implement. Summarizing, vertex shader solu-
tions are the winners if only a part of the scene is displace-
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texture mapping bump mapping parallax mapping

parallax mapping with offset limiting parallax mapping with slope iterative parallax mapping

ray marching binary search sphere tracing

relief mapping cone stepping per-vertex displacement mapping

Figure 34: Comparison of mapping techniques assuming normal displacement sizes

ment mapped, or we apply view culling or level of detail
techniques, or if the displacements are really large.

The rendering time of fragment shader approaches de-
pends on the number of pixels covering the displacement
mapped objects. Thus if we usually get far from these objects
or the objects are not visible, then fragment shader methods
are faster than vertex shader techniques.

Fragment shader methods are approximate by nature, al-
though different algorithms take different compromises be-
tween accuracy and speed. An accurate solution that handles
silhouettes as well is quite difficult to implement, and the im-
plementation is rather slow. Thus fragment shader solutions
are viable if the height map has high frequency characteris-

tics, and thus has high resolution, and the objects are small
(i.e. usually cover just a smaller part of the screen), and the
displacements are also small, so approximation errors are not
so visible.

Displacement mapping also has limitations. For example,
it is constrained to a one-valued height field so holes can-
not be added. This restriction is addressed by Deformation
displacement mapping [Elb02, SKE05] and Generalized dis-
placement mapping [WTL∗04]. However, despite to its limi-
tations, it has become a popular technique and we can expect
its increasing role in games and real-time systems.
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ray marching binary search sphere tracing

relief mapping cone stepping per-vertex displacement mapping

Figure 35: Comparison of high quality mapping techniques assuming extreme displacement sizes
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