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Abstract
The paper presents new, simple and physically plausible, but not physically based reflectance models for metals
and other specular materials. The most important member of this family is the modification of the Phong model,
which can eliminate its non-metallic characteristics. The new model gives back the ideal mirror in the limit case,
is easier to compute than other known models and is particularly suitable for importance sampling to efficiently
generate reflected directions in Monte-Carlo ray-tracing algorithms. Due to its simplicity, the new model can
become an integral part of commercial CAD systems to describe the specular part or metallic behavior. The paper
also examines the energy balance of the previously known and the newly proposed BRDFs concentrating on the
behavior at grazing angles, and comes to the conclusion that the Ward and the Cook-Torrance models cannot
guarantee energy balance and thus are not physically plausible. Finally, the generated images demonstrate how
the metallic impression can be provided by the new models.
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1. Introduction

The most famous BRDF model that can describe specular
materials was proposed by Phong17 and improved by Blinn
3. This model does not have physical interpretation but is
only a mathematical construction. Since the original form vi-
olates physics, its corrected version914 is preferred in global
illumination algorithms.

The first model that has physical base was proposed by
Torrance and Sparrow20, which was applied in rendering
algorithms in4. Later, He, Torrance et. al.7 introduced an-
other model that even more accurately represented the un-
derlying physical phenomena2. These models are not suit-
able forimportance samplingsince it would require the in-
tegration and inversion of the probability density functions
that are expected to be proportional to the BRDF. Not only
is it impossible to compute the required integral and inver-
sion analytically, but even the calculation of BRDF values

requires significant computational effort for these physically
based models.

In their recent paper Lafortune et. al. approximated a
non-linear, metallic BRDF by the combination of modified
Phong models12. The resulting BRDF is simple, but this ap-
proach requires a great number of elementary terms to suf-
ficiently represent highly specular materials. Another draw-
back of this method is that the BRDF is always bounded for
grazing angles.

Radiosity and Monte-Carlo ray-tracing rendering algo-
rithms usually assume that the BRDFs do not violate
physics. Such shading models must satisfy both reciprocity
and energy balance, and are calledphysically plausible14.

Reciprocitythat was recognized by Helmholtz is the sym-
metry property of the BRDF (fr, [sr�1]), which is defined
by the following equation15:

fr(L;V) = fr(V;L); (1)

whereL is the unit vector pointing towards the incoming
light and unit vectorV defines the viewing direction. Reci-

c
 The Institute of Computer Graphics, Vienna University of Technology.



2 Neumann, Neumann, Szirmay-Kalos / Simple Reflectance Models for Metals

procity is important because it allows for the backward trac-
ing of the light as happens in ray-tracing algorithms.

Suppose that the surface is illuminated by a beam from
directionL. Energy balancemeans that thealbedo, that is
the fraction of the total reflected power cannot be greater
than 1:

a(L) =

Z



fr(L;V) � cos �V d!V � 1: (2)

Energy balance makes the linear operator of the rendering
equation a contraction, which is usually required by iterative
and random walk methods to converge to the solution.

For the representation of metals, there has been no simple,
physically plausible model so far that is also good for highly
specular materials and can give back the mirror as the limit
case. This paper intends to fill this gap.

2. Metals and Phong-type models

2.1. Properties of metals and mirrors

Metals have several important properties:

� Their diffuse reflectance is usually negligible.
� The color reflected off the metals is determined by the

Fresnel function. Due to the angle dependence of the Fres-
nel function, this color fades at grazing angles.

� If the surface roughness goes to zero, metals become
shinier and converge to theideal mirror. The reflectance
function of the ideal mirror is� � F (�)= cos�L, where�
is the Dirac-delta,F is the Fresnel function and�L is the
incident angle. If the Fresnel term of the material is 1, then
an ideal mirror would reflect all energy independently of
the illumination, that is the albedo is 1 and the reflected
radiance is equal to the corresponding input radiance. At
directions other than the reflection direction, the radiance
is zero. As the material properties converge to that of the
ideal mirror, both theenergy reflectivity(albedo) and the
radiance reflectivity(BRDF) are expected to converge to
the corresponding functions of the ideal mirror.

� The BRDF function of metals has1= cos �L character-
istics that can compensate for thecos �L factor of the
irradiance.

� For great incident angles, the peak of the reflection lobe
(so called off-specular peak) occurs at an angle greater
than the angle of incidence.

When the new models are compared to the different versions
of the Phong model, these properties are examined. We shall
conclude that the new models meet all but the last require-
ments.

Let us consider the specular part of the physically plau-
sible versions of the Phong and the Blinn models14. Using
the widely accepted notations whereR is the mirror direc-
tion ofL,N is the unit normal vector, andH is the halfway
unit vector betweenL and the view vectorV, the Phong and

Blinn models are defined as thenth power of the dot prod-
ucts(R�V) and(N�H), respectively. For largen values the
BRDF gets highly specular. However, these models cannot
provide metallic or mirror looking since as the incident an-
gle grows towards the grazing angle, the ratio of the reflected
power as well as the output radiance decrease. Ifn goes to
infinity, then the reflected radiance and the albedo converges
to zero for 90 degree incident angle since in this limit case
the albedo follows the cosine function. Intuitively, the de-
crease of the radiance means that if we look at a Phong-
mirror, then the image reflected in the mirror gets darker for
greater reflection angles.

2.2. The new model for metals

This section discusses a construction method which pre-
serves the reciprocity and the energy balance of the BRDF,
but solves the mentioned problems of Phong-type models.

Considering the limit case, we should realize that in order
to eliminate the undesired behavior of the Phong model, its
cosine term must be compensated by an1= cos �L factor.
However, if we multiplied the specular part of the reciprocal
Phong model13 by 1= cos�L, then we would get back the
original, non-reciprocal Phong17 expression. On the other
hand, if we multiplied it with1=(cos �L � cos �V), then
the radiance would be unacceptably high around the reflec-
tion direction at grazing angles and the energy balance could
not be preserved. We can come to the same conclusion with
1=
p

(cos �L � cos �V) 21 correction factor as well.

However, the1=max(cos�L; cos�V) function have
been found appropriate. Let the minimum of the incident and
the viewing angles be�min:

�min = min(�L;�V): (3)

The proposed correction term is

1

cos�min

=
1

max(cos�L; cos �V)
: (4)

Let cos� = (R � V)+ where(R � V)+ = (R � V) if
(R �V) � 0 and 0 otherwise. The BRDF of the reciprocal
Phong model is

fr;Phong(L;V) = cn � cos
n � (5)

wherecn is a scalar parameter. Lafortune13 has shown that

cn �
n+ 2

2�
(6)

must hold in order for the model to preserve energy balance.

The new, corrected, reciprocal BRDF, which is the main
result of this paper, is

fr(L;V) = cn �
cosn �

cos �min

: (7)

This model meets the mentioned requirements and really
provides metallic impression as we demonstrate it later.
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Since the reflection vectorR is

R = 2(N � L)N� L; (8)

the formula to compute(R �V) can be expressed as

(R�V) = (2(N�L)N�L)�V = 2(N�L)(N�V)�(L�V):

(9)
Substituting this into equation 7, we can obtain the following
formula for the new BRDF:

fr(L;V) = cn �
[(2(N � L)(N �V)� (L �V))+]n

max((N � L); (N �V))
: (10)

The albedo function of the new model can be computed
from the Phong BRDF as the sum of the following two inte-
grals:

a(L) =

Z


((N�L))<(N�V))

fr;Phong(L;V) d!V+

Z


((N�L)�(N�V))

fr;Phong(L;V) �
(N �V)

(N � L)
d!V: (11)

Analyzing the albedo functions we can come to the con-
clusion that thecn constant of inequality 6 is also good for
the new model. More precisely, the albedo of the BRDF of
equation 7 has only a negligible overshooting where it ex-
ceeds value 1 ifn � 1. The overshooting occurs at small
incident angles whereL is close toN.
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Figure 1: Albedo functions of the new model for differentn

values

Below the arbitrarily selectedn = 1 minimum, thecn
value should be decreased in order to preserve energy bal-
ance, which would shift the maximum of the albedo function
and the BRDF from the perpendicular incident direction. For
example, ifn = 1 or 0:5, then the maximumcn constant
would result in0:0003, and 0.01 maximum overshooting at
13 and 30 degrees, respectively.

Figure 1 shows the albedo functions for differentn values.
We can see that in the limit case the albedo converges to
constant 1, which is the albedo of the ideal mirror.

2.3. Transition from the Phong model to the new model:
p-model

Using ap 2 [0; 1] parameter, a continuous transition can be
developed between the reciprocal Phong model defined by
equation 5 and the new metal model, as follows:

fr(L;V) = cn �
cosn �

cosp�min

; 0 � p � 1: (12)

Let us call this formula thep-model. Ifn � 1, then the maxi-
mum of the multiplicative factorcn is as shown in equation 6
for anyp 2 [0; 1].
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Figure 2: Ratio of thep-model and the Phong BRDFs for
different viewing angles

Figure 2 shows the ratio of the BRDFs of thep-model and
the Phong model for different viewing angles�V and for
different transition parametersp. The case ofp = 0 repre-
sents the reciprocal Phong model, while the case ofp = 1

means the new metal model.

2.4. The properties of the new metal model

This section examines the properties of the new model. Fig-
ure 3 compares the specular lobes of the Phong, new, Cook-
Torrance and He-Torrance models at42� incident angle. The
models have been calibrated to provide similar response for
perpendicular illumination.

Supposing that the Fresnel term is 1 (for silver this is prac-
tically true), the albedos of the Phong, He-Torrance, Cook-
Torrance, Ward and the new models are shown in figure 4.
Note that the Cook-Torrance and the Ward models diverge
at grazing angles, while the Phong, He-Torrance and Ward
BRDFs badly decrease for greater incident angles. The new
model converges to a value that is not lower than 0.5 for
grazing angles.
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Figure 3: Specular lobes of the Phong (n = 20), new (n = 20), Cook-Torrance (m = 0:1; n = 5) and He-Torrance
(�0 = 0:1; � = 1:4; ni = 6; nr = 0:8) models
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Figure 4: Albedo functions of the Phong (n = 150), new (n = 150), Cook-Torrance (m = 0:1), Ward (m = 0:1) and
He-Torrance (�0 = 0:1; � = 1:7) models
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Figure 5: Comparison of the BRDFs of the Phong and the new models (n = 100)

The maximum of the new BRDF is always at the mirror
directionR and its value iscn= cos �L for anyn, while the
maximum of the Phong model is alwayscn.

Figure 5 compares the normalized BRDF functions of the
Phong and the new models for 0, 40 and 80 degree incident
angles (normalization scales the BRDF to be 1 at 0 incident
angle).

It is also worth examining the output radiance assuming
a single point-like lightsource of intensity4� at distance 1
in directionL. In this case the irradiance iscos �L. The
output radiances of the Phong and the new models at dif-
ferent incident directions are shown in figure 6. This figure
demonstrates the earlier statement that the “Phong-mirror”
gets darker for greater incident angles, but the new model
eliminates this artifact.

2.4.1. Behavior at grazing angles

The new model slightly differs from real metals at grazing
angles. Unfortunately no reliable data are available about the
reflection of metals around 90 degree incident angle. How-
ever, when the He-Torrance model was fitted, the following
observation was made11: The normalized BRDF has about 1
value at the mirror direction while the maximum which is of
order1= cos�L is significantly below the mirror direction
(off-specular peak). Although this feature is not included in
the new model, according to our experience this error is not
visually observable.

2.4.2. Ideal mirror

The new model gives back the normalized BRDF of the ideal
mirror forn!1, which is1= cos �L. The output radiance
isLout(V) = Lin(L) if V = L and 0 otherwise.

Note that the new model can arbitrarily approximate the
ideal mirror. Selectingn in an appropriate way (e.g.n =

104 : : : 108), realistic, glossy mirrors can easily be gener-
ated. Using, for example, distributed ray-tracing, the mirrors
do not require a special case.

3. Generalizations of the new model

3.1. Retro-reflective materials

The proposed model can easily be generalized to provide
a retro-reflectiveBRDF which has the maximum at the di-
rection of the incident illumination. Practical examples of
retro-reflective objects are a projection screen, a traffic sign,
etc. For retro-reflective materials, mirror direction vector
R should be replaced by the illumination directionL. The
BRDF formula can be simplified to the following form:

fr(L;V) = cn �
[(L �V)+]n

max((N � L); (N �V))
: (13)

The maximum value ofcn is as defined in equation 6.

3.2. Anisotropic materials

Lafortune et. al.12 introduced the anisotropic generalization
of the Phong model as:

fr(L;V) = Cmax�(Cx(RxVx)+Cy(RyVy)+Cz(RzVz))
n =

Cmax � [(R �V)M ]n; (14)

where(R � V)M = RTMV is a special dot product con-
taining also a multiplication with diagonal matrixM . The
values at the diagonal ofM areCx,Cy andCz, respectively.

As for the original Phong model, the anisotropic general-
ization can also be normalized withp-th power of the max-
imum of the dot products(N � L), (N � V), thus we can
obtain:

fr(L;V) = Cmax �
[(R �V)M ]n

max((N � L); (N �V))p
: (15)
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Figure 6: Comparison of the output radiances of the Phong and the new models (n = 100)

This model is able to approximate metals even with a single
term, but several terms can also be combined together. The
resulting approximation is better than Lafortune’s scheme
since lettingp = 0 this formula gives back his original ex-
pression as a special case. The general formula containing a
combination of several terms is:

fr(L;V) =
X
i

Ci �
[(R �V)M

i
]ni

max((N � L); (N �V))pi
: (16)

4. Importance sampling

Importance sampling is an effective technique to reduce the
variance of Monte-Carlo algorithms. It requires the gener-
ation of random samples according to a probability density
which is proportional, or at least approximately proportional
to the integrand.

In order to generate the output radianceLout(V) from
the incident illuminationLin(L) (L 2 
) in Monte-Carlo
ray-tracing, the following integral should be evaluated:

Lout(V) =

Z



Lin(L) � fr(L;V) � cos �L d!L: (17)

If p(L) is a probability den-
sity and directionsL1;L2; : : : ;LM are sampled following
this probability distribution, then the Monte-Carlo estimate
of this integral is:

Lout(V) �
1

M
�

MX
m=1

Lin(Lm) �
fr(Lm;V) � cos �Lm

p(Lm)
:

(18)
According to the concept ofimportance sampling, p(L)
should be approximately proportional to the integrand to
minimize the variance of the solution. If no a-priori infor-
mation is available aboutLin, then it is assumed to be con-

stant, thus the probability density should be proportional to
fr(L;V) � cos�L.

4.1. Importance sampling for the Phong model

For the Phong model where the integrand is

Lin(L)�cn �(V�R)n �cos �L = Lin(L)�cn �cos
n ��cos �L;

Lafortune13 proposed the following probability density:

p(L) =
n+ 1

2�
� [(V �R)+]n =

n+ 1

2�
� cosn �: (19)

Samples according to this probability density can be
generated in the following way. Suppose that we can get
(um; vm) samples from a set containing uniformly dis-
tributed points in the unit square. Note that this sampling will
be used in Monte-Carlo ray-tracing where rays are traced
backwards. It means that for a givenV an appropriateL
vector should be found, which consists of two steps. In the
first step reflection directionRm is found, thenLm is gen-
erated by mirroring.

In order to find a reflection directionRm, angles�m and
�m in the lobe aroundV is generated:

(�m; �m) = (arccos u
1

n+1

m ; 2�vm): (20)

Note that using this formula, the probability density of gen-
erating a given direction(�; �) is (n+1)

2�
cosn � which is

proportional to the BRDF.

Let us establish a Cartesian coordinate systemi; j;k
wherek = V, and:

i =
V�N

jV�Nj
; j = i� k: (21)

Using these unit vectors, the mirror directionRm is:

Rm = sin�m �cos �m � i+sin�m � sin�m � j+cos�m �k:

(22)
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From the mirror direction the light vector can be derived eas-
ily: Lm = ((N � R)mN � Rm. Note that sampling ac-
cording to this probability density may generate directions
that point into the object ((N � L)m < 0). Thus we should
check whether or not the light vector points out of the ob-
ject ((N � L)m � 0) and reject this sample if it does not.
This rejection poses no problem since from these directions
Lin(Lm) is zero, thus these samples would get zero weight.

Summarizing, the Monte-Carlo estimate of the output ra-
diance is

Lout(V) �
1

M
�
2�cn

n+ 1
�

MX
m=1

Lin(Lm) � cos �Lm : (23)

If cn is the maximum allowed by inequality 6, then we obtain

L
out

(V) �
1

M
�
n+ 2

n+ 1
�

MX
m=1

L
in
(Lm) � cos �Lm : (24)

The selected probability density is not optimally propor-
tional to the integrand, only withcosn �. It would be better
to find a density that is proportional tocosn � � cos�L, but
it would be quite complicated to implement practically. This
simplification reduces the efficiency of the importance sam-
pling, since the ignoredcos �L can be arbitrarily small at
grazing angles, and its average is only1=2.

4.2. Importance sampling for the new model

The efficiency of the importance sampling gets higher for the
new model, and it will be particularly good for large viewing
angles. For the new model the integrand is

I(L;V) = Lin(L) � cn �
cosn �

max(cos�L; cos�V)
� cos�L;

which can be simplified if the cases when the incident angle
is smaller than the viewing angle (cos�L � cos�V) and
when the incident angle is greater than the viewing angle
(cos �L < cos�V) are considered separately:

I(L;V) = Lin(L) � cn � cos
n � if �L � �V;

I(L;V) = Lin(L) � cn � cos
n � �

cos �L

cos�V
if �L > �V:

As for the Phong model, the samples are generated ac-
cording to n+1

2�
cosn � probability density function. Using

thecn = (n+2)=2� substitution, the Monte-Carlo approx-
imation of the integral is:

Lout(V) �
1

M
�
n+ 2

n+ 1
�

0
@ MX

�Lm��V

Lin(Lm) +

MX
�Lm>�V

Lin(Lm) �
cos �Lm
cos �V

1
A :

(25)

For large viewing angles the samples will be in the first

sum of equation 25. Note that the probability density also
compensates for thecos �L factor here, thus this results in
a more effective importance sampling. The larger the view-
ing angle, the greater the efficiency (even if the probability
of the rejected samples approaches 0.5). The worst case of
the importance sampling of the new model is at zero degree
viewing angle, where the efficiency degrades to that of the
sampling of the Phong model, which is fortunately the best
here.

4.3. Albedo at grazing angles

Note that forLin = 1 equation 17 gives the albedo function
at illumination directionV, thus the importance sampling
can also be used to effectively calculate and tabulate the val-
ues of the albedo function.

Equation 25, that calculates the albedo as an expected
value, can also be given an intuitive explanation. At 90 de-
gree viewing direction, the weight of sample rays is(n +

2)=(n + 1). Since the BRDF is symmetric aroundR, half
of the samples point into the object, and are thus rejected.
Consequently, the albedo at 90 degrees is:

~a(90�) =
n+ 2

2(n+ 1)
: (26)

The albedos at grazing angles forn = 1, n = 2 and
n!1 are 3/4, 2/3 and 1/2, respectively. Note that forn!

1 which represents the ideal mirror case, for any� > 0,
~a(90� � �) = 1, thus the new model can really converge to
the ideal mirror.

5. Visualization of real materials

5.1. Metals

Metals have negligible diffuse reflectance and their BRDF
is proportional to the Fresnel function which is based on a
complex and wavelength dependent refraction index� 5. The
Fresnel function also depends on the incident angle making
the highlights colored. The reflected color can be computed
as a product of the irradiance and the BRDF, which is usually
done at a few discrete wavelengths.

For a single wavelength�, the new BRDF for metals is:

fr(L;V; �) =
n+ 2

2�
�

cosn �

cos �min

� F (�(�);�(L;V));

(27)
where �(L;V) is an appropriate incident angle, which
should be a symmetric function ofL andV to make the
model reciprocal. A straightforward selection is the angle of
the halfway vectorH. Another alternative is letting� =

�min. This alternative gives back the angle of the halfway
vector for the mirror direction but for other directions it gen-
erates a smaller angle. The largest difference between the
angle of the halfway vector and�min occurs when the light-
ing is perpendicular to the surface and the viewing direc-
tion is parallel to it. Here�min = 0 while the angle of the
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halfway vector is45�. Fortunately, the larger variation of
Fresnel function is usually closer to90� than to 0.

If we select�min to evaluate the Fresnel function, then
the resulting BRDF is

fr;metal(L;V; �) =
n+ 2

2�
�

cosn �

cos �min

� F (�(�);�min) =

cosn �

g(�min)
; (28)

whereg(�min) can be tabulated for the considered wave-
lengths. These tables allow for very fast BRDF evaluation.
This computational cost is lower than that of any previously
known metal models.

5.2. Plastics and ceramics

The new model is appropriate not only for metals but also for
other highly specular materials, such as for certain plastics
and ceramics. The main difference between these materials
and metals is that their diffuse component is relevant and the
specular part is responsible for the smaller part of the re-
flected power. For non metals the refraction index is a real
number. The highlights can be assumed to be white every-
where not only for greater incident angles.

When rendering plastics, the classical Lambertian model
can be applied for the diffuse component, while the specular
part can be determined by the new model. Thus the BRDF
has two components:

fr;plastics(L;V; �) =

ad(�)

�
+ as �

n+ 2

2�
�

cosn �

cos �min
� F (�(�);�min); (29)

where reflectivityad is the albedo of the diffuse component
andas determines the size of the specular part. In order to
make the model conserve energy,as+ad should not exceed
1. In many practical situations it is enough to compute the
color on the three primary colors(r; g; b) and the Fresnel
function can be assumed to be constant 1. For this simplified
case the following plastic model is proposed:

fr;plastics(L;V) =
(r; g; b)

�
+as�

n+ 2

2�
�
cosn �

cos �min
�(1; 1; 1);

(30)
wherer; g; b are the albedos of the diffuse component at
the wavelengths of the three primaries, andas � 1 �

max(r; g; b) should hold. It should be noted that not all
non-metal materials can be visualized by this simple BRDF,
and more sophisticated plastic models16 might be required.
However, this is a computationally effective model for many
practical cases.

6. Material editor

Due to its simplicity, the proposed BRDF can be used in
commercial rendering programs. Based on Paul Heckbert’s

BRDF editor8, we have developed a material editor, where
the optical parameters can be set interactively while the ef-
fect of the current settings is visualized by a simple scene. In
the simplest case, the material editor displays a sphere that
is illuminated by a few point lightsources and also by ambi-
ent light. The classical ambient term, however, is not good to
render the objects outside the highlight spots since it would
result in a constant color. Thus we propose the application
of homogeneous sky-light illuminationto replace classical
ambient lighting model. The homogeneous sky-light illumi-
nation can be defined by the constantLin(L) = S� function
at each representative wavelength. In this case the perceived
radiance reflected to directionV is

Lout� (V) =

Z



S� �fr(L;V; �) �cos �L d!L = S� �a(V);

(31)
which is the albedo of the material multiplied by the radi-
ance of the sky. Note that even without point lightsources
the resulting image is not homogeneous for a metal sphere
due to the angle dependence of the Fresnel and the albedo
functions (figure 7). Using precomputed albedo tables the
evaluation of the sky-light illumination is fast.

Albedo function of gold

albedo of gold

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

angle (0-90 degrees)

wavelength (400-750 nm)

Figure 7: The albedo of gold as a function of the incident
angle and wavelength

The sky-light as well as the point lightsources can be ei-
ther white or colored, and can be set interactively by the user.

Since the material editor is expected to provide realistic
appearance in all lighting conditions, the editor should incor-
porate automatic color mapping. This is done by calculating
the illumination of a diffuse gray sphere, which is expected
to have 0.5 median lightness on the display. This determines
a scaling factor for the mapping of the images. Using the
max(r; g; b) instead of the lightness, satisfactory results can
be obtained for colored lightsources as well.

c
 Institute of Computer Graphics 1998



Neumann, Neumann, Szirmay-Kalos / Simple Reflectance Models for Metals 9

Figure 8: A snapshot of the material editor displaying the diffuse gray reference object, and golden spheres havingn = 2; 8; 16

exponents

7. Reflectance models of(N �H) type

7.1. Blinn model

The Blinn model can be modified similarly as the Phong
model was corrected. Recall that the specular part the origi-
nal Blinn model3 is

fr;Blinn(L;V) = Cn � (N �H)n: (32)

The analytical calculation of theCn constant for integern
values can be found in1. The complexity of this calcula-
tion isO(n). The problems of this model are similar to that
of the Phong model. The reflected radiance and the albedo
converges to zero at grazing angles ifn goes to infinity.

Similarly to the procedures applied for the Phong model,
this model can also be corrected:

fr(L;V) = Cn �
(N �H)n

max((N � L); (N �V))
: (33)

TheCn constants that can be allowed not to violate energy
balance are summarized by table 1.

7.2. Ward model

Ward 21 introduced a simple BRDF of type(N � H). This
model is simpler than other known metal models and its
anisotropic form could provide particularly good metallic
impression. For the isotropic case, the specular component
has the following form:

fr(L;V) =
Cmax

4�m2
�
exp (�tan2 �=m2)p
((N � L)(N �V))

; (34)

n Blinn Blinn= cos�min

1 0.350 0.293

2 0.382 0.368

4 0.449 0.449

8 0.592 0.592

16 0.895 0.895

32 1.52 1.52

64 2.79 2.79

128 5.34 5.34

256 10.4 10.4

512 20.6 20.6

Table 1: The maximumCn constants for the original and
the corrected Blinn models

where� = arccos(N �H) andm is the standard deviation
(RMS) of the surface slope.

The main problem of this model is its behavior at grazing
angles and at viewing directions below the mirror direction.
Not only the BRDF but also the reflected radiance are un-
bounded for the Ward model, which is against practical con-
siderations. Ward stated that selectingCmax = 1 the model
meets energy balance ifm < 0:2. Examining the albedo
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function in the range of0:::89�, this is true quite accurately.
Here the maximum of the albedo is greater than 0.85, and it
converges to 1 ifm is decreased.

However at grazing angles the albedo significantly vio-
lates energy balance (figure 4). In the next section, it will
be be shown analytically that the BRDF diverges to infin-
ity at grazing angles, thus this model is not physically plau-
sible. For example, ifm = 0:1, thena(89:995�) = 1:2,
a(89:999�) = 2:6 anda(89:9995�) = 3:8.

One way of correcting this error is the limitation of the
1=
p

(N � L) � (N �V)) function.

On the other hand, the previously applied normalization
can also be used here, which leads to a new BRDF model:

fr(L;V) =
Cmax

4�m2
�

exp (�tan2 �=m2)

max((N � L); (N �V))
; (35)

A similar method can be applied to the anisotropic Ward
model as well.

TheCmax constants are summarized by table 2.

m Cmax

0.4 1.63

0.2 1.16

0.1 1.04

0.05 1.011

0.02 1.005

0.01 1.002

0.005 1.002

Table 2: The maximumCmax constants for the corrected
Ward models

7.3. Cook-Torrance model

Assuming that the Fresnel factor is 1, the BRDF of the Cook-
Torrance model4 is

fr(L;V) =
exp (�tan2 �=m2)

4�m2 cos4 �
�

G(N;L;V)

(N � L)(N �V)
; (36)

where thegeometry factorG(N;L;V) 19 is

G = minf2 �
(N �H)(N �V)

(V �H)
; 2 �

(N �H)(N � L)

(L �H)
; 1g:

(37)

As the Ward model, the Cook-Torrance model is not phys-
ically plausible either since it violates the energy balance
at grazing angles (figure 4) as it is shown analytically that
the albedo goes to infinity at grazing angles. Illustrating the
divergence numerically form = 0:1, the albedo values

at �L = 89:9�, �L = 89:99� and�L = 89:999� are
2.1, 9.3 and 91 respectively. On the other hand, both the
BRDF and the reflected radiance diverge. A possible cor-
rection is the limitation of the BRDF or more precisely the
G=((N � L) � (N �V)) term.

7.4. Proof of the divergence of the Cook-Torrance and
Ward models

Let us consider the situation around the highlight close to
the grazing angles, that is whereV � R, H = (L +

V)=jL + Vj � N, NL � 0 andNV � 0. We have
to show that it is possible to moveL towards grazing an-
gles in a way that the albedo will diverge along this path.
An appropriate path is a sufficiently small arc of the main
circle of the directional hemisphere. For a given vectorL,
the albedo integral requires the consideration of all vectors
V. However, establishing a lower bound, only those view-
ing vectors are considered which, together withL result in
thoseH halfway vectors that are inside acap(spherical cir-
cle aroundN) (figure 9). SinceH = (L + V)=jL + Vj

should hold, the allowable domain of viewing vectorsV can
be determined from these two regions by “spherical mirror-
ing” of each point in the domain ofL onto each point in the
domain ofH. The left figure demonstrates that if the domain
of L is too big compared to that ofH, then thoseV vector
sets which correspond to differentL vectors will not have a
common intersection. However, if the domain ofL is small
compared to that ofH, then theV vector sets corresponding
to differentL vectors will have a common intersection (right
figure 9). This region of intersection constrained to the the
upper hemisphere is called thecritical region.

In the Ward model, factor(1=4�m2) �exp (�tan2 �=m2)

can be lowerbounded inside thecap, so can the
(1=4�m2 cos4 �) � exp (�tan2 �=m2) factor of the Cook-
Torrance model. Thus we can find appropriate positive con-
stants�Ward, and�Cook so that

1

4�m2
� exp (�tan2 �=m2) � �Ward;

1

4�m2 cos4 �
� exp (�tan2 �=m2) � �Cook: (38)

Considering the geometry term and the denumerator of
the Cook-Torrance model, we can further restrict the domain
of L and thecapforH to guarantee that the constant 1 is the
real minimum in the geometry term, thus here we can apply
the following substitution

G(N;L;V)

(N � L)(N �V)
=

1

(N � L)(N �V)
: (39)

Using the constant lower bounds valid inside thecap, we can
obtain:

�Wardp
(N � L)(N �V))

� fr;Ward(L;V);
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cap: domain of H

domain of L

no critical region

L

L

mirror(L )

mirror(L )

1

2

1

2

N
cap: domain of H

domain of L

critical region:
domain of V

N

Figure 9: The relations between the domains ofL,H andV vectors (left figure: domain ofL is too big compared to the domain
ofH; right figure: domain ofL is small compared to the domain ofH)

�Cook
(N � L)(N �V)

� fr;Cook(~L; ~V ): (40)

For the albedo, a lowerbound can be established by
bounding the hemispherical domain
 to thecritical region

critical and using inequality (40). Let us consider the Ward
model:

aWard(L) �

Z


critical

�Wardp
(N � L)(N �V)

� (NV) d!V =

�Wardp
(N � L)

Z

critical

p
(N �V) d!V: (41)

For the albedo of the Cook-Torrance model, we can obtain:

aCook(L) �

Z

critical

�Cook

(N � L)(N �V)
(N �V) d!V =

�Cook

(N � L)
� j
criticalj: (42)

Since at grazing angles(NL) converges to zero, the
lowerbounds in equations (41) and (42) diverge, which
forces the albedo of the Ward and Cook-Torrance models
to diverge as well.

7.5. Mean albedo

If the irradianceLin is constant in the whole hemisphere,
then the ratio of the total reflected power is called themean
albedo, which can be obtained as:

amean =
1

�
�

Z



a(L) � cos�L d!L: (43)

For diffuse white materials and for the ideal mirror the mean
albedo is 1. Table 3 shows the mean albedo for different
models.

n Phong Phong
cos �min

Blinn Blinn
cos �min

1 0.737 0.934 0.879 0.941

2 0.708 0.902 0.800 0.952

4 0.688 0.887 0.706 0.863

8 0.676 0.888 0.620 0.748

16 0.670 0.901 0.562 0.679

32 0.668 0.919 0.531 0.648

64 0.667 0.937 0.516 0.639

128 0.667 0.953 0.508 0.640

256 0.667 0.966 0.504 0.644

512 0.667 0.975 0.502 0.649

1 0.5 1 0.5 1

Table 3: Mean albedo values of different models

The proposed correction by1= cos�min has “pumped-
up” the mean albedo, especially for the Phong-type model.
The models of(N�H) type including the Blinn and the Ward
models are significantly “darker” even after the pumping-up
than the Phong-type models that converge to the ideal mir-
ror faster by increasingn. For example, ifn = 128, then the
mean albedo of the Blinn model has been increased from
0:508 to 0:640 due to the correction. At 90 degree inci-
dent angle, on the other hand, the albedo has changed from
7:8 � 10�3 just to3:7 � 10�2.
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8. Simulation results

The following images have been rendered by a Monte-Carlo
ray-tracing algorithm that incorporates the discussed impor-
tance sampling.

The first three images display metal objects and were ren-
dered by the metal model of equation 28. Color computa-
tion was carried out at 8 discrete wavelengths, then using
the color matching functions the XYZ primaries were gen-
erated, which were finally converted to RGB. The material
properties of the metals (complex index of refraction), color
matching functions and the XYZ to RGB conversion matrix
were taken from5.

Figure 10 shows different metal objects on a diffuse plate.
There are three point lightsources and sky-light illumination
is also present.

Figure 11 displays three metal teapots on a diffuse plane.
Note that the teapot in the middle has quite highn value,
creating mirror images of the other two teapots.

Figure 12 displays a golden Beethoven head of relatively
low n value (4). On the other hand, the base silver plate acts
as an non-perfect mirror since it has very highn value (5000)
and the Fresnel function of the silver is close to 1, thus the
mirror images of the other objects are just slightly blurred.

The last two images were rendered by the plastic model
of equation 30. Figure 13 shows plastic spheres on a plastic
plate. All spheres have a large diffuse component defining
colors of the same hue but different lightness and saturation,
and the(as; n) specular parameters are selected according to
the following sequence:(0:04; 169), (0:065; 64), (0:09; 9),
(0:13; 3).

Figure 14 shows two ceramic teapots. Again, the diffuse
component is dominant, then exponents are 100 and 20,
respectively.

9. Conclusions

The paper derived a very simple BRDF model from the re-
ciprocal Phong model, that can render metals and other spec-
ular objects. The new model is particularly suitable for im-
portance sampling in Monte-Carlo ray-tracing algorithms.
Importance sampling of the new model is simpler than that
of the Blinn and Ward models and more efficient than that
of the reciprocal and non-metallic Phong model. The new
model can arbitrarily well approximate the ideal mirror, thus
mirrors and polishing do not require a special case.

Using numerical (Monte-Carlo) integration and also ana-
lytical considerations that are not detailed in the paper, we
have shown that the Ward and the Cook-Torrance models
are not physically plausible since they cannot conserve en-
ergy at grazing angles. The albedo, BRDF and the reflected
radiance are unbounded. The problems of the behavior at
grazing angles and energy conservation of physically based

and physically plausible models require further research. No
physically based model exists that can solve all problems
at grazing angles. The proposed limitation of the BRDF of
these models can guarantee physical plausibility, but is not
appropriate for the representation of very smooth metals.

We have shown that multiplying different known BRDFs
by1= cos �min the new model preserves energy balance and
can provide metallic impression. These models can easily be
incorporated in rendering software.

We have proposed sky-light illumination to replace the
ambient term when rendering a convex object and discussed
how this can be computed efficiently using tabulated albedo
values.

An important subject of the future research is the fitting
to measured BRDF data. The models proposed in this pa-
per have the general formf(�)=g(�min) wheref is some
BRDF andg is a scalar function. If measurement data are
available, functiong can also be determined to fit the result-
ing BRDF to the measurement results. On the other hand, if
there is no such measurement data, the new model can be
fitted to some physically accurate BRDF, as for example, to
the He-Torrance or the Cook-Torrance models. The benefit
of such an approach is that functiong can be tabulated as
a result of the fitting and the new model can be evaluated
much more efficiently than the reference models.

The paper discussed the anisotropicp-models that include
the Lafortune’s model as a special case. Thus the new model
is expected to provide more accurate fitting with less number
of terms. In such fitting the resulting albedo should also be
used as a control parameter in addition to the BRDF values.
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Figure 14: Ceramic teapots
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