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Abstract

The paper presents a single-pass, view-dependent method to solve the general rendering equation, using a com-
bined finite element and random walk approach. Applying finite element techniques, the surfaces are decomposed
into planar patches on which the radiance is assumed to be combined from finite number of unknown directional
radiance functions by predefined positional basis functions. The directional radiance functions are then computed
by random walk or by stochastic iteration using bundles of parallel rays. To compute the radiance transfer in a
single direction, several global visibility methods are considered, including the global versions of the painter’s,
z-buffer, Weiler-Atherton’s and planar graph based algorithms. The method requires no preprocessing except for
handling point lightsources, for which a first-shot technique is proposed. The proposed method is particularly
efficient for scenes including not very specular materials illuminated by large area lightsources or sky-light. In
order to increase the speed for difficult lighting situations, walks can be selected according to their importance.
The importance can be explored adaptively by the Metropolis and VEGAS sampling techniques.

Keywords: Rendering equation, global radiance, Monte-Carlo and
quasi-Monte Carlo integration, Importance sampling, Metropolis
method, z-buffer.

1. Introduction

The fundamental task of computer graphics is to solve a
Fredholm type integral equation describing the light trans-
port. This equation is called thendering equatiorand has

the following form:

L°(#,w) + / L(h(#, —w"),w") fr(w',%,w) - cos™ 0 dw'
Q

1)
whereL(#,w) and L° (#,w) are the radiance and emission
of the surface in poinf at directionw, 2 is the directional
sphereh(&,w') is the visibility function defining the point
that is visible from pointz at directionw’, f, (v, #,w)
is the bi-directional reflection/refraction functiof, is the
angle between the surface normal and directiasl, and
cos* 6§ = cos @' if cos®’ > 0 and zero otherwise (figure 1).

Since the rendering equation contains the unknown radi-
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Figure 1: Geometry of the rendering equation

ance function both inside and outside the integral, in order to
express the solution, this coupling should be resolved. Gen-
erally, two methods can be applied for this: finite element

methods or random walk methods.

Finite element methodsroject the problem into a finite
function base and approximate the solution here. The pro-
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jection transforms the integral equation to a system of linear the important directions using both the BRDF and the inci-
equations for which straightforward solution techniques are dent illumination have been proposed“4nt®. Just recently,
available. Finite element technigues that aim at the solution Veach and Guib#$ proposed the Metropolis method to be
of the non-diffuse case can be traced back to the finite ele- used in the solution of the rendering equation. Unlike other
ment approximation of the directional functions usjay- approaches, Metropolis sampliigan assign importance to
titioned spher& or spherical harmonic, and to the appli- a complete walk not just to the steps of this walk, and it ex-
cation ofextended form factotd Since the radiance func-  plores important regions of the domain adaptively while run-
tion is not smooth and is of 4-variate if non-diffuse reflec- ning the algorithm. Thus no a-priori knowledge is required
tion should also be considered, finite element methods re- about the important rays to construct a probability density
quire a great number of basis functions, and thus the systemfunction in advance. Instead, the algorithm converges to this
of linear equations will be very large. Although, hierarchi- probability density automatically.

cal ormultiresolution methodsand clusteringy 36 can help,
the memory requirements are still prohibitive for complex
scenes.

In order to reduce the noise of these methods, very many
samples are required, especially when importance sampling
cannot help significantly — that is when the lightsources are

Random walk methogsn the other hand, resolve the cou-  |arge and the surfaces are not very specular. One way of re-
pling by expanding the integral equation into a Neumann ducing the ray-object intersection calculation cost is storing
series, and calculate the resulting high-dimensional integrals this information in the form ofllumination networkd, but it
by numerical quadrature from discrete samples. A single dis- has large memory requirements, and representing the light-

crete sample corresponds to a complete photon-path (calledtransport of small number of predefined rays might introduce
thewalk) from a lightsource to the eye, which is usually built  grtifacts.

by d ray-shooting steps if the photon is refleciédimes. .
Since classical quadrature rules are useless for the calcula- 1ne Proposed new method combines the advantages of
tion of very high dimensional integrals due to their dimen- finite-element and random-walk approaches and can solve

sional exploision, Monte-Carlo or quasi-Monte Carlo tech- the general non-diffuse case. The method needs no prepro-
niques must be applied. cessing, the memory requirements are modest, and it is par-

] ] ticularly efficient for scenes containing larger area light-
In computer graphics the first Monte-Carlo random walk - soyrces and moderately specular surfaces — that is where

algorithm — calledlistributed ray-tracing— was proposed  nther importance-sampling walk methods become ineffi-
by Cook et alé, which spawned to a set of variations, in-  gjent.

cludingpath tracing?, light-tracingl?, Monte-Carlo radios-
ity 312024 and two-pass methods which combine radiosity
and ray-tracing’. 2. Informal discussion of the algorithm

The problem of naive generation of walks is that the prob- walk methods proposed so far use individual ray-paths as

ability that a shooting path finds the eye is zero for a pin-hole samples of the integrand of the rendering equation.
camera or very small if a non-zero aperture camera model

is used, while the probability that a gathering random path ~However, ray-shooting may waste a lot of computation
ends in a lightsource may be very little if the lightsources are PY ignoring all the intersection objects but the one clos-
small, thus the majority of the paths do not contribute to the €St t0 the eye. Thus it seems worth using a seglobal

image at all, and their computation is simply waste of time. ~ directions”. 20.29.28 for the complete scene instead of solv-
ing the visibility problem independently for different points

Z. Moreover, ray-shooting is a simple but by no means
the most effective visibility algorithm since it is unable to
take advantage of image or object coherence. Other methods
based on the exploitation of image coherence, such as the
z-buffer, painter’s, Warnock'’s, etc. algorithms can be con-
sidered as handling a bundle of parallel rays and solving the
visibility problem for all of them simultaneously. Continu-
On the other hand, importance samp#hghould be in- ous (also called object-precision) methods can even deter-
corporated to prefer useful paths along which significant mine the visibility problem independently of the resolution,
radiance is transferred. Note that although the contribution which corresponds to tracing infinitely many parallel rays
on the image is a function of the complete path, computer simultaneously.
graphics applications usually assign estimated importance
to individual steps of this path, which might be quite inac-
curate. In a single step the importance is usually selected These visibility algorithms assume that the surfaces are
according to the BRDF® 15, or according to the direction =~ decomposed into planar patches, thus the proposed method
of the direct lightsource8?. Combined methods that find also uses this assumption. On the other hand the patch de-

Thus, on the one hand, random walk must be combined
with a deterministic step that forces the walk to go to the
eye and to find a lightsourckight tracing!® connects each
bounce position to the eye deterministicaBy-directional
path-tracing® 45> methods start a walk from the eye and a
walk from a lightsource and connect the bounce positions of
the two walks.

The set of parallel global rays is called ttay-bundle
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composition also serves as the construction of the finite-  Secondly, efficient algorithms are needed that can com-
element structure. pute the radiance transfer of all patches in a single direction,
for which the generalization of discrete and continuous visi-

Using ray-bundles, we have to realize that even single- bility algorithms are applied.

ray techniques use recursive ray-tracing to simulate multi-
ple interreflections. Thus ray-bundles should also be traced
several times in different directions to model multiple inter- 3. Reformulation of the rendering equation using
reflections. This tracing composes a walk using ray-bundles finite-elements

in each step. . - . Lo
P Using finite element concepts, the radiance function is
searched in the following form:
2.1. Computation of global ray-bundle walks n
L(#w) ~ LV (@w) = Y L;(w)-b;(@)  (2)
direction 2 j=1
direction 3

where L™ (#,w) is the approximating radiance ahg(z)

direction 1 is a complete function system. In this function space, the

/\\\
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Figure 2: A path of ray-bundles

b, b, b b,

Figure 3: Finite element approximation

The algorithm takes samples of these global walks and
uses them in the quadrature. A single walk starts by selecting |5y product of two functionf ¢ is defined as the integral
a direction either randomly or quasi-randomly, and the emis- ¢ iheir products on the total surfage
sion transfer of all patches is calculated into this direction
(figure 2). Then a new direction is found, and the emission (f,g) = /f(f) - g(2) da. 3)
is transferred and the irradiance generated by the previous
transfer is reflected from all patches into this new direction. o
The algorithm keeps doing this for a few times depending
on how many bounces should be considered, then the emis-
sion is sent and the irradiance caused by the last transfer is
reflected towards the eye. Averaging these contributions re-
sults in the final image. When the radiance reflection is cal-
culated from the previous direction to the current direction
or to the direction of the eye, the radiance is attenuated by
the BRDF of the corresponding surface element.

e n "
L +fL frcosedw

Concerning the memory requirements of the method, each
patch holds the irradiance of the last step of the walk and the
accumulated radiance towards the eye. Since the selected di- Figure 4: Projection to the adjoint base
rections are the same for all surfaces, they must be stored
only once. Consequently the memory requirement is COM-  gjnce the radiance is approximated in a subspace, we can-
parable to that of the diffuse radiosity algquthms although it expect the radiance approximation to satisfy the original
is also capable to handle specular reflections. rendering equation everywhere. Instead, equality is required

In order to make this method work two problems must be inan appropriate subspace definedifjoint basisunctions
solved. The directions should be selected in a way that all b1(Z),b2(Z), . .. bx (%) (figure 4). This set is called adjoint
the possible light-paths are covered and the integral quadra- 0f b1(Z), b2(Z), . . . b. () since we require that

ture should be accurately approximated. The application of 1ifi=j,
random or low-discrepancy series on the directional sphere (bi(),b; (%)) = 4
is proposed to solve this problem. 0 otherwise,
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_ Projecting the rendering equation into the subspace of
b1(Z), b2(Z), . .. by (£) we obtain

(L™ (& w), bi()) = (Le (& w), bi (D)) +

(/ L" (W&, —w'),") - fr (W, & w) - cos™ 8 du',bi(Z)).
Q

®)

Using the orthogonal property stated by equation (4), we
get

Li(w) = L (w)+

Z/Lj(w')~(bj(h(f, ") fr (W', & w)-cos™ 0 by (£)) dw'.
o ®)

The same equation can also be presented in a matrix form:

L(w) = L°(w) + / T (W', w) - Lw) dw', )

whereL(w)|; = L;(w) is the vector of radiance values, and

T (W', w)lij = (fr (&', & w)-b; (h(F —w"))-cos™ ¢, bi (&)
is thebi-directional transport matrix

Assume that the BRDF functiof). (w’, #, w) can be well
approximated byf (w', w) inside the support ob; (if the
support of these basis functions is small, this is always pos-
sible). This allows for the separation of the transport matrix
to a diagonal matrif (w', w) of BRDF functions

F(w' w)|ii = fi(w',w),

and to ageometry matrixA (w') that is independent of di-
rectionw:

AW = (b (W@, ")) - cos™ 8, bi(@)  (8)

The geometry matrix contains a scalar product of basis
functions at points that are visible from each-other in direc-
tionw’. Thus it expresses the strength of coupling as the de-

gree of visibility.

Using the geometry matrix, equation (7) can also be writ-
ten as

L(w) = L*(w) -I—/F(w',w) AW L) dw', (9)

Q

Note that equation (9) is highly intuitive as well. The ra-
diance of a patch is the sum of the emission and the reflec-
tion of all irradiances. The role of the patch-direction-patch
“form-factor matrix” is played byA (w').
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4. Numerical solution of the directional integrals

In order to simplify the notations, the integral operator of the
rendering equation is denoted By

/T(w',w) ‘L(w") dv' = TL(w). (10)
Q
Thus the short form of the rendering equation is:
L(w) = L*(w) + TL(w). (11)

In equation (11) the unknown radiance functibfw) ap-
pears on both sides. Substituting the right sidg) by the
complete right side, which is obviousl(w) according to
the equation, we get:

L(w) =L°(w) + T(L°(w) + TL(w)) =
L°(w) + TL (w) + T°L(w). (12)

Repeating this step: times, the original equation can be
expanded into a Neumann series:

Lw) =Y TLW)+T""Lw).  (13)
=0
If integral operatof7 is a contraction, that is if
ITL)[| < A-|ILw)ll, A<, (14)
thenlim,,— 00 7™ L = 0, thus
Lw) =) T'LWw). (15)
=0

The contractive property of comes from the fact that a
reflection or refraction always decreases the energy. Using,
for example, the infinite norm, we obtain

ITL(W)lo < m@X/fr(W',f,W)~Cos* 0" dw'” || L(w)] oo
Q

maxaz(w) - [|L(w)]|s,

whereaz(w) is thealbedd® of the material at poing. For
physically plausible material models the albedo must be less
than 1.

The terms of this infinite Neumann series have intuitive
meaning as well7°L¢(w) = L¢(w) comes from the emis-
sion, 7'L¢(w) comes from a single reflection (called 1-
bounce),72L¢(w) from two reflections (called 2-bounces),
etc.

Using the definition of integral operatdr, the full form
of the Neumann series is:

Lw) = L (w) + /T(w'l,w) L (wh) dwt

Q
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+ //T(wi,w) - T(wh, wi) - L (wh) dwhdw}

Q Q
+ ... (16)

In practice the infinite sum of the Neumann series is al-
ways approximated by a finite sum. The number of required
terms is determined by the contractiviXyof operator7 —
that is the overall reflectivity of the scene. Let us denote the
maximum number of calculated bouncesByThe trunca-
tion of the Neumann series introduces a bias in the estima-
tion, which can be tolerated 1 is high enough.

In order to simplify the notations, we introduce the
bounce irradiancel; ford = 1,2, ... as follows:

Jo = A(wp) -L*(wp),

Ji = 4n- A(Wp_g) F(Wp_gp1,wp_a) - Ja-1
whereJ, is ad + 1 dimensional function of directions
(Wb—d:W’D—d+1 o, Wp)-

Thed-bounce irradiance represents the irradiance arriving
at each patch, that is emitted from a patch and is bounced
exactlyd times.

Similarly, we can define thmaxd-bounce irradiancd
ford =1,2,...as follows:

Io A(wp) - L (wh),
Ia A(W;f)fd) ’
(Le(wad) + 471 F(Wp—d41,Wp—a) - Id—l)
wherel; is ad + 1 dimensional function of directions
(Wh_a»Wp_gg1 -+ Wh)-

The maxd-bounce irradiance represents the irradiance ar-
riving at each patch after completing a path of lengftol-
lowing the given directions, and gathering and then reflect-
ing the emission of the patches visited during the path.

Limiting the analysis to at modD + 1 bounces, the so-
lution of the rendering equation can be obtained &Da
dimensional integral:

L(w)

D
) ./.../[Le(w)+47r.F(w'1,W).ID] dwly ... dwf.

Q Q

1

4

(

(17

This high-dimensional integra2 is 10 to 20 in practi-

cal cases) can be evaluated by numerical quadrature. Since

classical quadrature rules, such as the trapezoidal rule or
Gaussian quadrature, are not appropriate for the evaluation
of high-dimensional integrals due to their dimensional ex-
plosion, Monte-Carlo techniques are proposed.

A single walk can be characterized by the vector of the
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transillumination directions of individual steps, that is by
(w1, wh,-..,wp). Monte Carlo methods generate the sam-
ples randomly using an appropriate probability distribution
and setting the weight function as the inverse of the probabil-
ity density. The concept of importance sampling suggest us
to select a probability distribution that concentrates on points
that are responsible for great contribution to the final image
and neglect those walks that have no or negligible contribu-
tions. However, usually no a-priory information is available
about the important walks, thus the required probability den-
sity cannot be constructed. Note that when tracing individual
rays, we can approximate the contribution as the product of
the BRDFs (as usually done in Monte-Carlo ray-tracing al-
gorithms) or as the contribution of 1-bounces (direct-lighting
computation). However, when a bundle of rays is traced si-
multaneously, different patches would prefer different con-
tinuation directions since their normals and BRDFs can be
different.

Thus either we use uniformly distributed random or quasi-
random samples, or the importance information is built up
during the simulation in an adaptive manner.

In the next sections, the application of uniformly dis-
tributed random and quasi-random sequences is investi-
gated, then the incorporation of the importance using the
Metropolig® and VEGAS’ methods are discussed.

4.1. Simple Monte-Carlo, or quasi-Monte Carlo
integration

In order to evaluate formula (17)}/ random or quasi-
randont® walks should be generated (the difference is that
in Monte-Carlo walks the directions are sampled randomly
while in quasi-random walks they are sampled frota
dimensional low-discrepancy sequence, such as2ibe
dimensionalHalton or Hammersleysequenc®). When the
D-bounce irradiance is available, it is multiplied by the
BRDF defined by the last directian; and the viewing di-
rectionw to find a Monte-Carlo estimate of the radiance that
is visible from the eye position. Note that this step makes the
algorithm view-dependent.

There are basically two different methods to calculate the
image estimate. On the one hand, evaluating the BRDF once
for each patch, a radiance value is assigned to them, then in
order to avoid “blocky” appearance, bi-linear smoothing can
be applied.

Using Phong interpolation, on the other hand, the radi-
ance is evaluated at each point visible through a given pixel
using the irradiance field, the surface normal and the BRDF
of the found point. In order to speed up this procedure, the
surface visible at each pixel, the visibility direction and the
surface normal can be determined in a preprocessing phase
and stored in a map. Phong interpolation is more time con-
suming but the generated image is not only numerically pre-
cise, but is also visually pleasing.
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The final image is the average of these estimates. The

complete algorithm — which requires just one variable for
each patchi, the maxd-bounce irradiancg[i] — is summa-
rized in the following:

for m = 1to M do /I samples of global walks

Generate(wim) , wgm), . ,wg”))
I=0
ford=0to D — 1do /I a walk
I=A(W),_,)
(Le(Why_y) +4m F(wly_ypwhy_g) 1)
endfor

Calculate the image estimate from the irradiahce
Divide the estimate by/ and add to the Image
endfor
Display Image

4.2. Combined and bi-directional walking techniques

The algorithm that has been derived directly from the
quadrature formulae uses directionto evaluate the contri-
bution of 1-bounces, directior{s;1,w-) for the 2-bounces,
(w1, w2, ws) for the 3-bounces, etc. This is just a little frac-
tion of the information that can be gathered during the
complete walk. We could also use the samples,gfw-,

ws, etc. to calculate the 1-bounce contributiday,w-),
(wi,ws), ..., (w2,ws), etc. combinations of directions for

2-bounces, etc. This is obviously possible, since if the sam-

ples of(w1,w2, ...wp) are taken from a uniform sequence,
then all combinations of its elements also form uniform se-
guences in lower dimensional spaces.

If all possible combinations are used, then each random

walk generateg’}) samples for thel-bounces, which can

Ib)[D — d] += 4x - A(w(™,)-

Flwg? L wim):

Z[b— 1][D — pd]
endfor
endfor

endfor

Divide theb-bounce estimates(b][d]) by (?)

Calculate the image estimate from thi][d] estimates

Divide the estimate b/ and add to the Image
endfor
Display Image

Furthermore, when the radiance is transferred to a direc-

tion, the required information to transfer the radiance to the

opposite direction is also available, that is when computing
geometry matrixA (w') for some direction, the matrix for

the reverse directiod (—w') is usually also known paying
very little or no additional effort.

The improvement that takes advantage of this is called the
bi-directionalalgorithm.

Due to thecos™ function only one of the elements
A(w");; and A(—w');; can be non zero. It means that bi-
directional techniques do not even require additional storage
and a single geometry matrix can be used to store the values

for bothw’ and—w’. It can be decided whether a matrix ele-

ment is valid forw' or —w’ by inspecting the angle between
its normal vector and the given directions.

Formally, in the bi-directional technique;, —w1, w2,
—wo, etc. are used to calculate the 1-bounce contribution,
(wi,w2), (w1, —w2), (—wi,w2), (~wi,—w2), (w1,ws),

(w1, —w3), etc. combinations of directions for 2-bounces,
etc. This multiplies the number of samples used for the com-

be used to increase the accuracy of the method. Note that theptation of 1-bounces by 2, for the 2-bounces by 4 and gen-

increased accuracy of thisdmbined method is for free in
terms of additional visibility computation.

However, due to the dependence of the BRDF functions
on two directions and due to the fact that different bounces
will be estimated by different numbers of samples, the re-
quired storage per patch is increasedx@D + 1)/2 vari-
ables. SinceéD is 5 to 8 in practical cases, this storage over-
head is affordable.

Now each patch is represented by a triangle mafrix
where the(i, j) element stores the sum of thoséounce
irradiances where the last directioruig. Table 1 shows an
example forD = 3.

The complete combined algorithm is shown below:

for m = 1to M do
Generate(wim) , wgm), .
ford=0to D —1do /I quasi-random walk
IM)[D - d] = A(wp_,) - Lé(wh_y)
forb=2tod + 1do
Zb[D—-d =0
forpd=b—1tod — 1do

LwM)

relative L1 error

erally for thed bounces by2¢, which can be quite signifi-
cant.

Error of bundle tracing in a homogeneous room (D=5).
T T

QMC normal —

QMC combined -----

QMC bidirectional -----
MC normal

MC combined ---

MC bidirectional -----

o
s
T

0.01 |

0
global walks

Figure 6: Combined and bi-directional walking techniques

versus normal walk

The additional samples of the “combined” and particu-
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last direction  1-bounce 2-bounce 3-bounce
3 Jo(u)g)
2 Jo(ws) J1(ws,w2)
1 Jo(wl) J1(W3,W1)+J1(W2,wl) Jz(w;;,u)g,wl)

Table 1: Irradiance matrix of a patch foD = 3

bi-directional

combined

Figure 5: Normal, combined and bi-directional walking technique

larly the “bi-directional” walking techniques increase the ac- timate for 7P L¢ represented by>-bounce irradiancdp.
curacy as shown by figure 6. The test scene was the homo-Let us use this estimate to correct the emission function in
geneous Cornell-box where all surfaces have constant 0.5the higher order terms when the second global walk is com-
diffuse reflectance and emission, which allowed to solve the puted:

rendering equation analyticalf/(the solution isL. = 1 —

2~ (P+D) 10 find a reference for the error analysis. Note that
although quasi-Monte Carlo sampling is generally better, the
improvement provided by the combined and bi-directional
methods is less for the quasi-Monte Carlo walk than for the
Monte-Carlo walk. This can be explained by the fact that the
low-discrepancy points are so “well-designed” that mixing
different sets of them does not improve the quadrature much
further.

4.3. Making the global walk estimates unbiased

The methods introduced so far fall into the category of ran-
dom walk techniques which calculate only the filsterms

of the infinite Neumann series and simply ignore the rest.
Consequently, the estimate will be biased.

However, the bias can be easily eliminated using a sim-
ple correction of the emission functidif when calculating
higher order interreflections.

Note that the a global walk provides random estimates for
the following terms:

L+ 7L + ...+ TPL®.

Thus having computed the first walk, we also have an es-

(© Institute of Computer Graphics 1998

L+ T@L+T°L) +...+ TP+ T°L%) =

LE+TL+.. +TPLe 4+ TP L+, +T72PLe. (18)

This gives us estimates not only for the bounces fromD to
but also for the bounces frol? + 1 to 2D. The D bounce
irradiance will store an estimate f@r° L + 7 2P L¢, which
can again be used to compensate the emission. Thus after
the second step we have estimates for the Iddounces.
Assymptotically, this method will generate estimates for all
bounces. However, i1 global walks are generated, then the
number of estimates for bounces of Q¥as M, for bounces

of D+1to2Dis M —1, forbounce2D+1to3Dis M —2
etc., which still results in some small energy defect.

In the following section, this unbiased method using 1-
step walks is investigated formally. The formal treatment is
based on the concept of stochastic iteration.

4.4, Stochastic iteration

Let us recall again the short form of the projected rendering
equation (formula (11)):

L(w) = L*(w) + TL(w).



Iterational techniques realize that the solution of this in-
tegral equation is théxed pointof the following iterational
scheme

L, =L+ 7L, (19)

thus if operator7 is a contraction, then this scheme will
converge to the solution from any initial function.

A possible way of storing the approximating functions
L., is the application of finite-element techniques also in
the directional domain. However, this suffers from two crit-

ical problems. On the one hand, an accurate finite-element L°+

approximation usually requires very many basis functions,
which in turn need a lot of storage space.

On the other hand, when finite element techniques are ap-

plied, operator7 is only approximated, which introduces
some non-negligible error in each st&df the contraction

ratio of the operator is\, then the total accumulated error
will be approximatelyl /(1 — X) times the error of a single

step, which can be unacceptable for highly reflective scenes.

Both problems can be successfully attackedtoghastic
iteration'4.

The basic idea of stochastic iteration is that instead of ap-
proximating operatof” in a deterministic way, a much sim-
pler random operator is used during the iteration which “be-
haves” as the real operator just in the “average” case.

Suppose that we have a random operdtorso that

E[T'L]=TL (20)

for any functionL.

During stochastic iteration a random sequence of opera-
tors 71*, 75, ... T;" ... is generated, which consists of in-
stantiations off ™.

We are particularly interested in random operators having
the following construction scheme:

1. A random “direction’w; is generated using probability
densityprob(w).

2. Using the generatedv; a “deterministic” operator
T *(w;) is applied toL.

Using this sequence of random transport operators, the it-
erational scheme will not converge, but it will generate sam-
ples that fluctuate around the real solution. Thus the solution

can be found by averaging the estimates of the subsequent

iterational steps.

Formally the sequence of the iteration is the following:

]:‘1 — Le+7—1*Le
L2 — Le+7T2*Le+7TZ*7—1*Le
Ly = L+ Tyl + Ty Tar— LS +...  (21)
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Averaging theM steps, we obtain:

T T Lo +. ..

1 M
7 2

Il
—

(22)

In order to prove thal really converges — in the sense
of stochastic convergence — to the solution of the integral
equation, first it is shown that the expectation value of

* * * *
7Vi+k=7'i+k—l e 7’i+17'i Le

is T**T'Le. Fork = 0, it comes directly from the require-
ment of equation (20). Fdr = 1, the total expectation value
theorem can be applied:

BT T L] =

/E[TillTi*LeWiﬂ = w] - prob(w) dw.
Q
Since for a fixedv;+1 = w, operator7;’; becomes a de-

terministic linear operator, thus its order can be exchanged
with that of the expected value operator:

/E[7~i117~i*L6|Wi+1 = w] - prob(w) dw =

Q
/T* (w) (E[T;"L?]) - prob(w) dw. (23)

Using requirement (20) for the expected value inside
the integral, then for the expectation of the resulting
T (w) (TL®) function, we obtain:

/T* (w) (E[T;"L°]) - prob(w) dw

/ T* (@) (TL?) - prob(w) dw = [T (w) (TL?)]

Q

T (TL?) = T°LF, (24)

which concludes our proof for the = 1 case. The very
same idea can be used recursively for more than two terms
(k > 2 case).
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Returning to the averaged soluti@n its expected value
is then
M-1
M

M -2

EL] =L+ 7L + T°LE + ...
(25)
which converges to the real solution goes to infinity.
Note also that there is some energy “defect” for higher order
terms for finite M values. This can be neglected for high
number of iterations, or can even be reduced by ignoring the

first few iterations in the averaged restilt

T?LE +

Finally, it must be explained why random variate
stochastically converges to its expected value. Looking at
formula (22) we can realize that it consists of sums of the
following form:

M—k
1 * * * ke
% E TiteTiyk—-1 .- Tipa Ty LS.
i=1

M

According to the theorems of large numbers, and particu-

larly to the Bernsteitf theorem, these averages really con-

verge to the expected value if the terms in the average

are not highly correlated. It means that random variables
ik Titk—1--- T LS and T4 T4y ... T,°L should

not have strong correlation if # j (for the precise defi-

nition what strong correlation means here, reféf)tdhis is

always true if the sequence of operators are generated from

independent random variables, which will be the case in the
proposed algorithm.

4.4.1. Definition of the random transport operator

In order to use this general stochastic iterational scheme in
practice, the key problem is the definition of the random
transport operator. This operator should meet the require-
ment of equation (20), should be easy to compute and it
should allow the compact representation of el func-
tions.

Generally the domain d& is a 2-dimensional continuous
space, so is the domain @fL. From the point of view of
compact representation, what we have to avoid is the repre-
sentation of these functions over the complete domain. Thus
those random transport operators are preferred, which re-
quire the value oL just in a single direction (or to be more
general, just in a few directions).

In itself, this is not enough, since even a single direc-
tion can result in a continuoug L function, which must be

stored and re-sampled for the subsequent iteration. The so-

lution of this problem is the postponing of the complete cal-
culation of 7; L until it is known where its value is needed in
the next iteration step. It means that the random transport op-

9

A straightforward selection of the random transport op-
erator is the bi-directional transport matiXw’, w) multi-
plied by4x. The required phases are established by decom-
posing the bi-directional transport matrix into the geometry
matrix A (w") and the BRDF matri¥ (w', w).

If the global directions are sampled from a uniform distri-
bution, this selection satisfies equation (20) since

Eldr - T(w',w) - L(w")]

/F(w',w) AW L) dw' = TL(w).

The complete algorithm — which requires just one vari-
able for each patch the irradiancd[i] — is summarized in
the following:

I=0

for m = 1to M do
Generate random global directiari”)
I=A(wm). (Le(w(m)) + 47 - F(wm=1) (m)) .1)
Calculate the image estimate from the irradiahce
Divide the estimate by/ and add to the Image

endfor

Display Image

[l iterational cycles

Note that this algorithm is quite similar to the global walk
algorithm, but it does not reinitialize the irradiance vector af-
ter eachDth step. In fact, it generates a single infinite walk,
and adds the effect of the lightsources to the reflected light
field and computes the image accumulation after each step.

Error of bundle tracing in homogeneous room
T T

stochastic iteration ——
bi-directional QMC (D=5)
bi-directional QMC (D=10) -----

0.1

L1 error

0.001 L L

1000
global steps (iterations)

Figure 7: Stochastic iteration versus bi-directional walking
techniques of length 5 and of length 10

erator is decomposed into two phases, where the first phase Figure 7 compares the convergence of the stochastic it-
depends on the current and the second on both the currenteration to that of the bi-directional global walks for the ho-

and the next directions. An appropriate point for the decom-
position is when the irradiance is already generated, but its
effect is not yet computed on the surfaces.

(© Institute of Computer Graphics 1998

mogeneous Cornell box scene. Note that unlike in figure 6
here the axis shows the number of steps instead of the num-
ber of walks (a walk consists of 5 or 10 steps respectively).
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Since global walks provide estimates after a complete walk,
their error curves has 5 or 10 times lower horizontal resolu-
tion. In contrast to how figure 6 has been generated, in these
measurements the bias erras { for D = 5 and2~*! for

D = 10) have not been compensated to demonstrate that the
global walks are biased while the stochastic iteration is not.

We can conclude that stochastic iteration is significantly
better than the best of the global walk techniques.

5. Calculation of the radiance transport in a single
direction

The key of the calculation of the radiance transport is the
determination of geometry matrix.

Examining the elements of the geometry matrix
AW)ij = (b (A(F, —w")) - cos™ 0/, bi(T)) =

—w')) - bi(®) - cos™ ¢ dT

we can realize that its computation requires the determina-
tion of whether a point of the support of basis functias
visible from a point of the support of basis functigrn a

given direction—w’ (note thath; (h(Z, —w')) - b;(Z) is non
zero only ifZ is in the support ob; and the poinf(z, —w')

is in the support ob;). For the algorithms to be introduced,
the support of a basis function is a planar triangle, while the
support of an adjoint basis function is either a planar triangle

or a single vertex.

Because of the apparent analogies to the transillumination
radiosity methoep: 38, the directionw’ is called thetransil-
lumination direction

Note that an element of the geometry matrix is non zero
only if cos* #' > 0, that is if patchi is facing towards the
transillumination direction. Faces meeting this requirement
are calledront faces while those faces which cannot meet
this are calledback facesObviously, only front faces can
get radiance contribution from a transillumination direction
(this can be lifted easily to allow transparent materials).

/

transillumination direction

/3\‘/5

transillumination
plane

Figure 8: Global visibility algorithms

Note that the determination of the geometry matrix is a

Szirmay-Kalos / Global Ray-bundle Tracing

global visibility problem since only the viewing direction
is fixed but the eye position is not. In fact, the eye position
should visit all surface points or all vertices depending on

the selected adjoint base.

Image seen from patch 2

Image seen from patch 3

Figure 9: Scene as seen from two subsequent patches

Looking at figure 8, it is easy to see that the global vis-
ibility problem can be solved in an incremental way if the
patches are visited in the order of their position in the transil-
lumination direction. In fact what is visible from a patch dif-
fers just in a single patch from what is visible from the next
patch. This single patch may appear as a new and may hide
other patches (figure 9). The required sorting is not obvi-
ous if the patches overlap in the transillumination direction,
but this can be solved in a way as proposed in the painter’s
algorithn?2. On the other hand, in our case the patches are
usually small, thus simply sorting them by their center intro-
duces just a negligible error.

Although sorting seems worthwhile, it is not the only al-
ternative. Thus the proposed visibility algorithms will be
classified according to whether or not an initial sorting is
required.

At a given point of all global visibility algorithms the ob-
jects visible from the points of a patch must be known. This
information is stored in a data structure called wsbil-
ity map The visibility map can also be regarded as an image
on the plane perpendicular to the transillumination direction.
This plane is called theansillumination plandfigure 8).

The algorithms that generate the visibility map can be ei-
ther discrete or continuous.

For discrete algorithmghat decompose the transillumi-
nation plane to small pixels of siz€P, the visibility map is
simply a rasterized image where each pixel can store either
the index of the visible patch or the radiance of the visible
point.

For continuous algorithmsthe visibility map identifies
those regions in which the visibility information is homo-
geneous (either the same patch is seen or no patch is seen).

Discrete algorithms are faster and the rendering hardware
and the z-buffer of workstations can also be exploffeti
but in order to handle all patches simultaneously, the “win-
dow” of the algorithm should include all patches. The large
window, however, should be decomposed into sufficiently
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small pixels to provide the required precision, which might
result in high resolution requirements for sparse scenes.
Continuous algorithms are free from these resolution prob-
lems, but are usually more difficult to implement and are
much slower.

The computation of the geometry matrix also depends on
the selected basis functions and the finite-element algorithm
(adjoint basis). We consider two different sets of basis func-
tions and two finite element approaches. In the first case
the Galjerkin method is applied for piece-wise constant ba-
sis functions. Secondly, piece-wise linear basis functions are
used in a point-collocation algorithm.

5.1. Galerkin's method with piece-wise constant basis
functions

Let us use the following basis functions

{1iff€Aj,

In Galerkin’s method, the unknown directional functions
L;(w) are found to ensure that approximation (2) is the real
solution of the radiance equation in the subspace induced by
the basis functions;. To satisfy normalization criteria, the
adjoint base is selected as follows:

b; (%) =

(26)
0 otherwise.

B 1/A]‘ if # € Aj,
b (£) = (27)
0 otherwise.
Since
} : Lif i = g,
(@5 = [ 0,0 5u(@) az -
% 0 otherwise.
(28)
the element, j of the geometry matrix is
A(W)]ij = (b (h(F, —w")) - cos™ 0, b:(T)) =
]- — ! * nl —
R -/bj(h(m,—w )) - cos™ @' dZ. (29)

Aj

Since the integrand of this equation is piece-wise con-
stant, the integral can also be evaluated analytically:

C
L /bj (h(%, —w")) - cos™ @' dF = W

X3
Aj

T . (0)

whereA(i, j,w') expresses the projected area of pattfmat

is visible from patch at direction—w’. In the unoccluded
case this is the intersection of the projections of patahd
patchj onto the transillumination plane. If occlusion occurs,
the projected areas of other patches that are in between patc
¢ and patcly should be subtracted as shown in figure 10.

Having the visibility map of patches visible from;, the
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h

11

 projection plane

A
P

—_— /
POA

Figure 10: Interpretation ofA(z, j, w")

A

A\

— - —
projection of Ay

computation ofA(z, j,w’) requires to determine which re-
gions are inside the projection df; and to sum the areas.

In the following sections different continuous and discrete
visibility algorithms are presented to determine the neces-
sary visibility information.

5.1.1. Continuous algorithm with initial sorting: Local
visibility map
This algorithm process the patches in the order defined by

the transillumination direction and maintain the visibility
graph dynamicallys.

visibility map 4
0|

visibility map 3 visibilit
0| 0

map 2 visibility map 1

I\

4 4

4 4

0 0

transillumination direction

Figure 11: Local visibility maps

When the processing of patahis started, the visibility
map shows which patches are visible from paitcfo calcu-
late theA(s, j,w") values, those patches which have projec-
tions either entirely or partly in the projection of paicare
selected from the visibility map, and are clipped onto patch
i to clearly separate inner regions. The process of clipping
of the patches onto each other is quite similar to the Weiler-
Atherthon visibility algorithm8. Then the projected areas of
those patch parts which are inside the projection of patch
are summed to find th (s, j,w') values.

When we step onto the patch next to patch new visi-
ility map is created by replacing those region parts that are
Inside the projection ofi; by the projection ofd;. Then, if
patchi can reflect energy onto the next patch (it is a back
facing patch with respect to the transillumination direction),

b
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then patch should be added to the visibility map, otherwise,
the place of the projection of patélwill be empty.

The algorithm, that maintains a ligt for the sorted
patches,V for the projected patches that are currently in
the visibility map,O for those clipped, not-hidden patches
whose projections are outside patchand I for those
clipped, not-hidden patches whose projections are inside
patchi, is as follows:

list L = Sort patches in direction’
visibility mapV = { }
for each patchiin L do
Clip patches iV onto patch and
generateO = outside list,/ = inside list
if patchs is front facingthen
Al ') = Y01 Al
V=0
else
V = O + patchi
endif
endfor

If the number of patches is, then the size of the visibil-
ity map isO(n) in the average case b@{n?) in the worst-

case. Thus the resulting algorithm that compares each patch

with the actual visibility map will have)(n?) average case
and O(n®) worst case time-complexity. This is not accept-
able when complex scenes are processed. In order to reduc
the complexity, we can use the wide selection of computa-
tional geometry methods that usually apply spatial decom-
position on the plane to reduce the number of unnecessary
comparison®.

5.1.2. Continuous algorithm without initial sorting:
Global visibility map

This algorithm first projects all the polygon vertices and
edges onto the transillumination plane, then determine all the

Szirmay-Kalos / Global Ray-bundle Tracing

visibility map

transillumination direction

Figure 12: Global visibility map

project vertices and edges onto the transillumination plane
calculate all intersection points between projected edges
compute the graph of the induced planar subdivision
for each region of this graptho

Sort patches visible in this region
endfor

The speed of the algorithm is considerably affected by
how well its steps are implemented. A simplistic implemen-
tation of the intersection calculation, for example, would test
each pair of edges for possible intersection. If the total num-

%er of edges s, then the time complexity of this calcu-

lation would beO(n?). Having calculated the intersection
points, the structure of the subdivision graph has to be built,
that is, incident nodes and arcs have to be assigned to each
other somehow. The number of intersection poin3(a?),
hence both the number of nodes and the number of arcs
fall into this order. A simplistic implementation of the graph
computation would search for the possible incident arcs for
each node, giving a time complexity 6f(n*). This itself

is inadmissible in practice, not to mention the possible time

intersection points between the projected edges, and form aComplexity of the further steps.
planar graph that is a superset of the set of projected edges However, applying the results of computational geometry,

of the polygong'©. 38,

In the resulting planar graph, each territory represents a
list of patches that can be projected onto the territory. Fur-
thermore, if the patches do not intersect, the order of patches
is also unique in each territory.

Thus, to computed(s, j,w’) for somes, the lists of the
territories should be visited to check whethérincluded. If
patchi is found, then the patch next to it on the list should be
retained to find indey, and the area of the territory should
be added toA (i, j, w').

The draft of the algorithm to generate the data structure is
the following:

we can do it much better. Algorithms are available that can
doitin O((n + i) log n) ® 43 time wheren is the number of
patches (or edges) amds the number of edge intersections,
or even inO(n' *°\/k) time” wherek is the number of edges

in the visibility map. The number of intersectiohand the
number of edges are inO(n?) in the worst-case, but are in
O(n) in practical scenes.

5.1.3. Discrete algorithm with initial sorting: Global
painter’s algorithm

Discrete algorithms determine the visible patches for each
front facing patch through a discretized window. This is
a visibility problem, and the result is an “image” of the
patches, assuming the eye to be on patdhe window to
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be on the transillumination plane and the color of pgtth
be j if the patch is facing to patchand to be) otherwise.

visibility map 4 visibility map 3 visibility map 2 visibility map 1

- \

oo

[SHNINFNFNI:
—

‘O‘w‘w‘l—“l—“l—"l—"H‘I—“N‘N‘N"\)‘#‘J}‘#‘#‘O‘O
L T amm

CWWWWWWWWWWORMDMARANOO

OWWWWWWRNNNNNBERARADO

transillumination direction

Figure 13: Application of painter’s algorithm

If the patches are sorted in the transillumination direction
and processed in this order, the computatiom¢f, j, w")
requires the determination of the pixel values inside the pro-
jection of patch. Then, to proceed with the next patch in the
given order, the pixels covered by patchre filled withz if
patchi is not front facing and 0 otherwise. The two steps can
be done simultaneously by a modified scan-conversion algo-
rithm that reads the value of the image buffer before modi-

fying it.

This is summarized in the following algorith#ft

Sort patches in direction’ (painter's algorithm)
Clear image
for each patchi in the sorted ordedo
if patchs is front facingthen
for each pixel of patch
j = Read pixel
A(i, j,w") += 6P
Write 0 to the pixel
endfor
elseRender patch with color
endfor

Sorting a data set is known to hat¥n log n) time com-
plexity, so does the painter’s algorithm in the average case.
A single cycle of the seconfdr loop contains only instruc-
tions that work with a single patch and an “image”, thus the
time required for a single cycle is independent of the number
of patches. Since thier loop executed: number of times,
the time complexity of théor loop isO(n). Consequently
the algorithm require®(n log n) time.

(© Institute of Computer Graphics 1998
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5.1.4. Discrete algorithm without initial sorting:
exploitation of the hardware z-buffer

In this section another method is proposed that traces back
the visibility problem to a series of z-buffer steps to allow
the utilization of the z-buffer hardware of workstatiofis

receiver
image

emitter

emitter patches receiver patches

6

5

selected direction

Figure 14: Calculating the power transfer

The radiance is transferred by dynamically maintaining
two groups of patches, aemitter groupand areceiver
group in a way that no patch in the receiver group is al-
lowed to hide a patch in the emitter group looking from the
given transillumination direction.

Let the two classes of patches be rendered into two image
buffers — called the emitter and receiver images, respec-
tively — setting the color of patchi to j and letting the se-
lected direction be the viewing direction for the receiver set
and its inverse for the emitter set.

Looking at figure 14, it is obvious that a pair of such im-
ages can be used to calculate the radiance transfer of all those
patches which are fully visible in the receiver image. The
two images must be scanned parallely and whéthat is
the index of patch) is found in the receiver image, the cor-
responding pixel in the emitter image is read and its value
(4) is used to decide whicH (i, j,w') should be increased
by the area of the pixel.

In order to find out which patches are fully visible in the
receiver image, the number of pixels they cover is also com-
puted during scanning and then compared to the size of their
projected area. For those patches whose projected area is ap-
proximately equal to the total size of the covered pixels, we
can assume that they are not hidden and their accumulated ir-
radiances are valid, thus these patches can be removed from
the receiver set and rendered into the emitter image to calcu-
late the radiance transfer for other patches (this is the strat-
egy to maintain the emitter and receiver sets automatically).

This leads to an incremental algorithm that initially places
all patches in the receiver set. Having calculated the receiver
image by the z-buffer algorithm, the radiance transfer for the
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Figure 15: Steps of the evolution of receiver images

Figure 16: Steps of the evolution of emitter images

(© Institute of Computer Graphics 1998
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fully visible patches are evaluated, and then they are moved to computeA (4, 7, w’) similarly to the continuous global vis-
from the receiver set to the emitter set. The algorithm keeps ibility map algorithm.

doing this until no patch remains in the receiver set (cyclic

overlapping would not allow the algorithm to stop, but this

can be handled by a C||pp|ng as inthe painter’s a|goﬁmm 5.2. AnalySiS Of the f|n|te I’esolution problem Of diSCI’ete
The number of z-buffer steps required by the algorithm is methods

quite small even for complex practical scefiesExploiting In order to find out how important the resolution of the vis-
the built-in z-buffer hardware of advanced workstations, the ibility map, a Cornell box scene (figure 17) consisting of

computation can be fast. 3705 triangular patches has been rendered with the global
In the following algorithmR denotes the collection of the ~ Painter’s algorithm having set the resolution to different val-
receiver patches. ues. Since the resolution can only be interpreted when com-
pared to the size of the patches, table 2 summarizes the av-
erage projected patch sizes in pixels and also the residual

R = all patches . i
P errors of the iteration.

Clear emitterimage
while R is not empty
Clear receiveimage
Render patches iR into receiverimage via z-buffer

resolution pixel-per-patch  residual error

for each pixelP 50 x 50 05 0.25
r = receiverimage[P]
e = emittecimage[P] 100 x 100 2 0.05
patchf].visible_size +=§ P
A(r,eyw’) +=0P 200 x 200 8 0.02
df

endior 500 x 500 55 <0.01

/I Move patches to the emitter set
foreachpatclp _ _ 1000 x 1000 220 <0.01
if patchp].visible_size=s projected size of patch
Remove patclp from R . . L
aFrJ1d rzbnder it to emitteimage Table 2: Average pixel per patch and the discretization er-

endif rors

endfor
endwhile

Note that the resolution plays negligible role until the av-
When checking whether or not the visible size is approx- erage pgtch per pixel .ratio is significantly greater than one
imately equal to the projected patch size, the allowed toler- (1€ft Of figure 18). For instance, the error curves of resolu-
ance is the total area of the pixels belonging to the edge of tions1000 x 1000 and500 x 500 can hardly be distiquished.

the patch, which in turn equals to the sum of the horizontal 'NiS €an be explained by the stochastic nature of the algo-
and vertical sizes of a triangular patch. rithm. Each radiance transfer uses a different direction, thus

a different discrete approximation of the size of the patch.
This algorithm “peels” the scene by removing the layers Although this approximation can be quite inaccurate in a
one by one. The sequences of evolving receiver and emitter single step, the expected value of these approximations will
images are shown in figure 15 and in figure 16, respectively. still be correct. As the algorithm generates the result as the
Note that the first receiver image contains all patches, thus average of the estimates, these approximation errors will be
its pair is an empty image that is not included. The pair of the eliminated. The effect of the low resolution is just an “addi-
second receiver image is the first shown emitter image, etc. tional noise”.
The last emitter image includes all patches thus its receiver

pair is empty, and therefore is not shown However, when the pixel size becomes comparable to the

projected size of the patches, then some of the patches may

be omitted in each radiance transfer, which generates energy

5.1.5. Discrete algorithm without initial sorting: defect. The iteration will deteriorate from the real solution
software z-buffer as we can clearly see it in figure 18 when the resolution is

. lower than2 200.
For the sake of completeness, we mention that the global z- 00 > 200

buffer algorithm20 can also be used for our purposes. This The computation time is roughly proportional to the num-
method stores not just the closest patch index andhigdue ber of pixels in the visibility map thus it is desireable to keep
in the buffer, but the whole list of those patches which can be the resolution low (right of figure 18). For example, the 500
projected onto this pixel. The patches are scan-converted by stochastic iterations that generated the left and the right of
the z-buffer algorithm, and are inserted into the lists associ- figure 17 needed 3 and 8 minutes respectively. The opti-
ated with the covered pixels. The lists of pixels can be used mal selection of the resolution is the minimal number which
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Figure 17: A Cornell box as rendered usii@0 x 100 (left) and1000 x 1000 (right) pixels for the visibility map

Error in Stochastic Iteration for different visibility map resolutions
1 T T T
resolution=1000x1000 —
resolution=500x500 -----
resolution=200x200 -----
resolution=100x100
resolution=50x50 ----

L1 error
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Error in Stochastic Iteration for different visibility map resolutions
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Figure 18: Comparison of the error curves using visibility maps of different resolutions as a function of iterations (left) and of

computation time (right)

guarantees that even the smallest patches are projected onto
a few pixels.

5.3. Point collocation method with piece-wise linear
basis functions

In this method?® the radiance variation is assumed to be lin-
ear on the triangles. Thus, each veri@f the triangle mesh
will correspond to a “tent shaped” basis functignthat is

1 at this vertex and linearly decreases to 0 on the triangles
incident to this vertex (figure 19). Assume that the shading
normals are available at the vertices.

In the point-collocation method, the unknown directional
functionsL; (w) are determined to ensure that the residual of

b, (p) basis function

Figure 19: Linear basis function in 3-dimension
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the approximation is zero at the vertices of the triangle mesh.
This corresponds to Dirac-delta type adjoint basis functions,
whereb; (%) is non-zero at vertexonly.

Thus the geometry matrix is

AWNij = (bj(h(&,—w")) -cos™ 8, 6(& — &) =

bj (h(fi, —w')) - cos” 9, (fl) (31)

5.3.1. Calculation of the irradiance at vertices

Since now the irradiance is not piece-wise constant but
piece-wise linear, it is better to evaluadgw') - I directly
than evaluating the geometry matrix and the irradiance sep-
arately. Thus we have to find

(AW")-Dli] = Z bj (h(Zi, —w")) - cos™ §' (&) - I[3].
= (32)

In this formula theb; (h(Z;, —w")) factor is non-zero for
thosej indices which represent a vertex of the patch visi-
ble from #; at directionw’. The exact value can be derived
from the calculation of the height of the linear “tent” func-
tion at pointh(#;, —w'). This means that having identified
the patch visible fron¥; at directionw’, the required value
is calculated as a linear interpolation of the irrandiances of
the vertices of this patch.

1@
d-

direction d-1,,.% @12 cosp @

Figure 20: Global visibility algorithm for the vertices

To solve it for all patches, the triangular patches are sorted
in directionw’, then painted one after the other into an image
buffer. For vertex of each triangle, the “color” is set to

L{ (Wp—a) +4m - Fii(wp_qy1,wp-a) - 1[4]

at stepd and the linear interpolation hardware (Gouraud
shading) is used to generate the color (or irradiance) in-
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are processed in the order of the transillumination direction,
every patch should be rendered only once into the image
buffer.

Thus the calculation of the irradiances at a given transil-
lumination direction is:

Sort patches in direction’ (painter’s algorithm)
Clear image-buffer
for each patchi in sorted ordedo
if patchs is front facingthen
for each vertex|[é] of the patchi
color[v[i]] = Lz[i](w’D_d) + 4
Fv[i],v[i](wb_d+1rwlp_d) ) I[U[Z”
endfor
Render patchi into the image-buffer
else
for each vertex([é] of the patchi
I[v[é]] = (image buffer at projection aff:])-

cos™* 0’ [v[d]]
endfor
Render patcti with color O
endif
endfor

The processing of a single direction for all patches require
a sorting step and the rendering of each triangle into a tem-
porary buffer. This can be done ((n log n) time.

6. Handling sky-lightillumination

The visibility methods introduced so far can easily be ex-
tended for sky-light illumination by initializing the image on
the transillumination plane by a special value if the direction
points downwards (sky is usually above the horizon). When
the radiance is transferred and this value is found in a given
pixel, then the irradiance of the receiver is updated according
to the intensity of the sky-light.

7. Application of importance sampling

The global illumination method proposed so far is particu-
larly efficient if the lighting distribution in the scene does not
exhibit high variations. For difficult lighting conditions im-
portance sampling can help, which prefers those sequences
of directions that transport significant radiance towards the
eye.

Importance sampling is a general variance reduction

side the triangle. For back-facing patches this step clears themethod that can improve Monte-Carlo and quasi-Monte

place of the triangle in the “image”.

If the triangles that are in front of the given triangle in di-
rectionw’ are rendered into the image buffer, then the radi-
ance illuminating the vertices of the given triangle is readily
available in the current image buffer. Assuming that patches

(© Institute of Computer Graphics 1998

Carlo quadraturé®.

Suppose that integrdl = fv f(z) dz needs to be evalu-
ated. For our casd, represents the image aifids responsi-
ble for determining the contribution of a global path denoted
by z, thus bothI and f are vectors. In order to rank the
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domain points according to the size fifz), a scalar impor-
tance functior? (z) must be defined that can show where the
elements in vectof are large.

A straightforward definition of this importance function is
lettingZ be the sum of luminances of all pixels of the image.
This importance function really concentrates on those walks
that have a significant influence on the image. Using the lu-
minance information is justified by the fact that the human
eye is more sensitive to luminance variations than to color
variations.

Importance sampling requires the generation of samples
{z1,22,...2z7} according to a probability densify(z) —
which is at least approximately proportionalZ¢z) — and
using the following formula:

_ (i@ (@] L S £
I‘V/mz) . E[p(z>] 2 )
(33)

Since no a-priori information is available which these im-
portant directions are, some kind of adaptive technique must
be used. In this section the application of the VEGAS and
Metropolis sampling methods are considered.

7.1. VEGAS sampling

The VEGAS algorithr# is an adaptive Monte-Carlo method
that generates a probability density automatically and in a
separable form. The reason of the requirement of separabil-
ity is that D number ofk-dimensional tables need much less
space than a singl® - k-dimensional table. Formally, let
us assume that the probability density can be defined in the
following product form:

go(wp). (34)

plwi,ws2,...,wp) x gi1(w1) - g2(w2) ... -

It can be showi? that the optimal selection af; is

2
L (w1) \// 2 “’1"' 9D) gy dwp. (35)
g2(w2) ... gp(wp)
and similar formulae apply tg, ..., gp-

These ¢1,...gp functions can be tabulated as 2-
dimensional arrays (note that a single direction is defined
by 2 scalarsp and#). The(z, ) element of this matrix rep-
resents the importance of the directional region where

2im 2(i + D

o [(AT 20T g dn UA DT,

This immediately presents a recursive importance sam-
pling strategy. The algorithm is decomposed into phases

Szirmay-Kalos / Global Ray-bundle Tracing

are initially constant, a standard Monte-Carlo method is ini-
tiated, but in addition to accumulating to compute the inte-
gral, g1, ... gp are also estimated using equation (35). The
Monte-Carlo estimate of the neyy(w1) is

M
(new) Zz(wl,...,wD)

g wi) = . (36)
) =\ 2 i g en)

Then for the following phase, the samples are selected ac-
cording to they functions. In order to calculate a sample for
w;, for instance, a single random value is generated in the
range of 0 and the sum of all elements in the array defining
gi.- Then the elements of the array is retained one by one and
summed to a running variable. When this running variable
exceeds the random sample, then the searched directional
region is found. The direction in this region is then found by
uniformly selecting a single point from the region.

VEGAS method is not optimal in the sense that the prob-
ability density can only be approximately proportional to the
importance even in the limiting case since only product form
densities are considered.

We have to mention that the original VEGAS method used
1-dimensionalg functions, but in our case, the 2 scalars
defining a single direction are so strongly correlated, thus
it is better not to separate them.

In theory, higher dimensional tables could also be used,
but this would pose unacceptable memory requirements.

8. Metropolis sampling

The Metropolis algorithd? is a Monte-Carlo quadrature
method that incorporates adaptive importance sampling by
exploring the properties of the integrand automatically. Un-
like the VEGAS method, it converges to the optimal proba-
bility density that is proportional to the importance, thatis in
the limiting case:

I(z) = b-p(z).
However, this probability density cannot be stored, thus

in the Monte-Carlo formula the importance should be used
instead, in the following way:

f(z) inp. [ 1@ _
V/ Z(z)
@] _ b = f)
b-E {I(Z)] T ;I(Zi (37)

In order to generate samples according(e) = 1/b -

consisting of a number of samples. At the end of each phaseZ(z) a Markovian process is constructed whose stationary

weightsg,, . . . gp are refined, to provide a better probability
density for the subsequent phase. Assumingghat. . gp

distribution is justp(z). The definition of this Markovian
proceszi,z2,...2; ...} is as follows:

(© Institute of Computer Graphics 1998
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for i = 1to M do 8.1.1. Definition of the tentative transition function
Based on the actual statg, . .
choose another ra?ldom tentative paint The statespace of the Markovian process consist®-of
if (Z(z¢) > Z(z:)) then accept(’zi+1 = z) dimensional vectors of directions that define the sequence
else N Il accept with the importance degradation ~ Of directions in the global walks. Thus the tentative transi-
Generate random numbein [0, 1]. tion function is allowed to modify one or more directions in
if r < Z(zt)/Z(z;) thenz; 41 = z¢ these sequences.
else Zit1 = Z;
endif P
m,
endfor 00(2 ) /s % w(lmﬂ)
The generation of the next tentative sample is governed 4 w(™
. e . w(rmi)
by atentative transition functio?’(x — y). In the algo- 2
rithm we use symmetric a tentative transition function, that
isT(x — y) = T(y — x). The transition probability of !
this Markovian process is:
T(x—y) if Z(y) > Z(x) , Figure 21: Mutation strategy
Plx—y)=
Tx—y) T 7 otherwise . L
(x = y) - Z(y)/Z(x) (38) The set of possible sequences of directions can be rep-
In equilibrium state, the transitions between two statagd res_ented by @D-dimensional unit cube (each direction is
y are balanced, that is defined by two angles).

In the actual implementation random mutations that are
uniformly distributed in 2 D dimensional cube of edge-size
Using this and equation (38), and then taking into account 5 aré used. In ordertq fipd the ex}ent of the random pertur.ba-
that the tentative transition function is symmetric, we can tON, several, contradicting requirements must be taken into
prove that the stationary probability distribution is really Cconsideration.
proportional to the importance:

p(x)- P(x—y)=ply) Py = x).

First of all, in order to cover the whole statespace of unit
size, the number of mutations should be much greater than
p(d) _ i(y —x) _ ;(y =X ?X) = ?X). (39) s~2P_ From a different point of view this states that the mu-
p(y) (x—y) (x—=y) I(y) (¥) tations cannot be very small. Small mutations also empha-
size the start-up bias problem which is a consequence of the
If we select initial points according to the stationary distri-  fact that the Markovian process only converges to the de-

bution — that is proportionally to the importance —then the  sjred probability density (this phenomenon will be examined
points visited in the walks originated at these starting points in detail later).

can be readily used in equation (37).

On the other hand, if the mutations are large, then the
Markovian process “forgets” which regions are important,

) . L . thus the quality of importance sampling will decrease.
8.1. Metropolis solution of the directional integrals

Finally, another argument against small mutations is that
it makes the subsequent samples strongly correlated. Note
that Monte-Carlo quadrature rules usually assume that the
random samples are statistically independent, which guar-

L(w) = antees that if the variance of random variap(e) is o, then
the variance of the Monte-Carlo quadrature willdygy/M
1 , , , after evaluatingl/ samples. Since Metropolis method uses
(E)D / a / (L) + 4 - F(wh,w) - Ip] duly ... duf statistically co%ated zamples, the variznce of the quadra-
ture can be determined using the Bernstein the&temhich
states that the variance of the quadrature is

M
b Le(w) + 47 - F(w’l,w) Ip (m) 10 1 M
il . [1+2 R(k
(M) mzz:l I(wim),wgm)7 L "’J(Dm>) (40) o - # (41)

The Metropolis approximation of the radiance vector is:

Q Q

whereM is the number of samples (also calleditation$ where R(k) is an upperbund of the correlation between
and b is the integral of the importance function over the f(z;) andf(z;+«). It means that strong correlation also in-
whole space. creases the variance of the integral estimate.

(© Institute of Computer Graphics 1998



20 Szirmay-Kalos / Global Ray-bundle Tracing

The Metropolis method promises to generate samples with
probabilities proportional to their importance in the station- 4
ary state.

8.1.2. Generating an initial distribution \
t
k.

Although the process converges to this probability from
any initial distribution as shown in figure 22, the samples
generated until the process is in the stationary state should
be ignored. Figure 23: A test scene

To ensure that the process is already in the stationary case
from the beginning, initial samples are also selected accord-
ing to the stationary distribution, i.e. proportionally to the
importance function. Selecting samples with probabilities
proportional to the importance can be approximated in the
following way. A given number of seed points are found in Error of bundle tracing
the set of sequences of global directions. The importances of ! T ‘ quasi Monte-Carlo ——
these seed points are evaluated, then, to simulate the distri- SRR TN R —
bution following this importance, the given number of initial
points are selected randomly from these seed points using
the discrete distribution determined by their importance.

different perturbation size, and for quasi-Monte Carlo sam-
ples are shown by figure 24.

8.1.3. Automatic exposure

average error

Equation (40) also contains an unknotoonstant that ex-
presses the luminance of the whole image. The initial seed
generation can also be used to determine this constant. Then
at a given point of the algorithm the total luminance of the
current image — that is the sum of the importances of the "
previous samples — is calculated and an effective scaling o1 - s o
factor is found that maps this luminance to the expected one. global walks

Figure 24: Error measurements for the “difficult scene”
8.2. Variance reduction

Metropolis method may ignore calculated function values  The image generated using Metropolis walks are shown
if their importance is low. However, these values can be infigure 25.

used to reduce variance. Suppose that the importance de-
grades at step. Thus the the process is iy with prob-
ability (1 — Z(z¢))/Z(z;) and in z;+; with probability
Z(z¢)/Z(z;). In order to compute the integral quadrature,
random variablef(z;)/Z(z;) is needed. A common vari-
ance reduction technique is to replace a random variable by
its mean, thus we can use

) @) | L) f(z)
(1 I(m)) Iz) | I(a '

instead off (z;) /Z(z;).

8.3. Evaluation of the performance of the Metropolis
method

To evaluate the new algorithm, and particularly the effi-

ciency of the Metropolis sampling the scene of figure 23 has Figure 25: The image of the scene with difficult lighting ren-
been selected. The surfaces have both diffuse and speculaijered Metropolis walks

reflection and the lightsource is well hidden from the cam-
era (figure 23).

The error measurements of the Metropolis method with  Considering the performance of the Metropolis method

(© Institute of Computer Graphics 1998
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Convergence of the Metropolis method (100 samples) Convergence of the Metropolis method (500 samples)

distribution —
reference ----- 10

distribution ——

10 reference -

Convergence of the Metropolis method (1000 samples) Convergence of the Metropolis method (5000 samples)

distribution — . distribution —
reference ----- X reference ----

=

Okr N WA OO N ®OO
Or MW B OO N ®

Figure 22: Convergence of the first-bounce as computed by 100, 500, 1000 and 5000 Metropolis samples

for our algorithms, we have to conclude that for homo- is constant, thus the transition proposed by the tentative tran-
geneous scenes, it cannot provide significant noise reduc- sition function is always accepted.

tion compared to quasi-Monte Carlo walks. This is due to
the fact that the integrand of equation (7) is continuous
and is of finite variation unlike the integrand of the origi-
nal rendering equation, thus if its variation is modest then
quasi-Monte quadrature is almost unbeatable. The combined

and bi-directional walking techniques cause even further
smoothing which is good for the quasi-Monte Carlo but bad
for the Metropolis sampling.
e o o
On the other hand the number of samples was quite low
(we used a few thousand samples, whiléSithe number of
P B, R,

In this case, the probability density in the equilibrium
is constant. The question is how quickly the Metropolis
method approaches to this constant density (figure 26).

samples was 50 million). For so few samples the Metropolis P

method suffers from the problems of initial bias and corre- 0 1
lated samples. Due to the smooth integrand, the drawbacks . ) ) R
are not compensated by the importance sampling. Figure 26: Evaluation of the uniform distribution

Metropolis method can generate samples following a
given probability density in a closed interval. Since random
In order to theoretically evaluate the start-up bias, let us ex- mutations may result in points that are outside the closed in-
amine a simplified, 1-dimensional case when the importance terval, the boundaries should be handled in a special way.

8.4. Evaluation of the start-up bias

(© Institute of Computer Graphics 1998
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If the variable of an integrand denotes “angle of direc- that the initial distribution i$(z), we can obtain:

tion”, then the interval can be assumed to be “circular”, that
is, the external points close to one boundary are equivalent
to the internal points of the other boundary. Using this as-
sumption, let us suppose that the domain of the integration

is [—m, w] and the integrand is periodic withr.

Let the probability distribution at step be p,. The
Metropolis method is initiated from a single seed)athus
po = 6(z). Assume that transition probabilitf (y — z),
which is equal to the tentative transition probability for con-
stant importance, is homogeneous, thaPiyy — z) =
P(z —y). Using the total probability theorem, the following
recursion can be established for the sequengg of

Posr (@) = / pu(y) - Pla - ) dy =

(oo}
/ pn(y) - Pz —y) dy = pn P, (42)
wherex denotes the convolution operation.

Applying Fourier transformation to this iteration formula,
we can obtain:

p:ﬂ—l = P;; : P*, (43)

wherep;, 11 = Fpnt1, pn, = Fpn andP* = FP.

Since the domain is “circular”, i.ex denotes the sample
point ase + 2kx for any integetk, the probability density is
periodic, thus it can be obtained as a Fourier series:

o)

Z a}in)ejkw;

k=—o0

pu(z) = (44)

wherey = /—1. The Fourier transform is thus a discrete
spectrum:

oo

Y oo -k

k=—o00

(45)
Substituting this into equation (43), we get

(>

k=—o0

Pani(f) = al” - 8(f - k)) - P(f) =

(oo}

S a Pk o(f — k),

k=—o0

(46)

thUSal(cn"_l) = a,(cn) - P (k).

Using the same concepttimes, and taking into account

pr(f)= Y (PT(R)"-8(f—k)  (47)
k=—o0
thus in the original domain
k=00

pa@) = Y (P'(R)" - (48)

The L, error betweerp,, and the stationary distribution is
then

1
e — poolle = / pu(@) =l de (49)
0

Note that according to the definition of the Fourier series

™

a(()") = L/pn(ac) de =1

2

-

(50)

independently of:, thu5af)°°) is also 1. Using this and sub-
stituting equation (48) in equation (49), we get the following
error for the distribution:

k=00

2

k=—00,k#0

|lpn = pooll2 = |P=(k)|**  (51)

8.4.1. Starting from multiple seeds

So far we have assumed that the integrand is estimated from
a single random walk governed by the Markovian process.
One way of reducing the startup bias is to use several walks
initiated from different starting points, called seeds, and
combine their results.

If the initial point is generated from seedpoints
x1,x2,...,xy randomly selecting:; with probability «;
(Z?’:l «a; = 1), then the initial probability distribution is
the following

N
po(z) = Zai “0(x — ;) (52)

Using the same concept as before, the probability density
aftern steps can be obtained in the following form

k=oco N

pﬂ(w) = Z Zai . (P*(k))n . ejk!(m—wi)

k=—o0 i=1

(53)

The error of the probability distribution after steps then

k=00 N 2n
lonpscll: = | > [Pk D i erem|
k=—o00,k#0 =1

(54)
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8.4.2. Analysis of uniform random perturbations 2N AT

Let the perturbation be the selection of a point following uni- - N
form distribution from an interval of sizA centered by the
current point. Formally the transition probability is g

{1/A if |2 —y| < A,
P(x—y) = (55)

0 otherwise

Figure 28: First shot technique
The Fourier transform of this function is
sin kwrA

) ) kA ) where L°? is the emission of the small, point-like light-
which can be rather big even for largevalues. This for- sourcesL™ is the emission of the area lightsources and the

mula, together with equation (51) allows to generate the (efiected radiance. Substituting this into the rendering equa-
graph of the startup errors for different sample numbers and tjgn we have:

for different perturbation size (figure 27).

P (k) = (56)

L + L' = [° + T(L* + L"). (58)
Startup bias
) " gelaz — Expressing.™? we obtain:
delta=0.6 - |
Goat6 - L™ = (L* — L + TL?)+ TL". (59)

15

1 Introducing the new lightsource term
L =L°—L*? +TL? (60)

which just replaces the point lightsourcdsX) by their ef-
fect (T L°?), the equation fod,"? is similar to the original
rendering equation:

L2 error of the probability density

05 i

L"" =L +TL". (61)
0 S— T T T
0 20 4 mberofsamplel’ 80 100 It means that first the direct illumination caused by the
. _ _ . point lightsources must be computed, then they can be re-
Figure 27: Startup error for different perturbation siz& moved from the scene and added again at the end of the

computation.

Note that the probability density is not accurate for many
iterations if the perturbation size is small compared to the 9.1. Diffuse shot
size of the domain. This situation gets just worse for higher

dimensions. Getting rid of the point lightsources may reduce the variation

of integrand, but medium sized lightsources still pose prob-

lems. One way of handling these is decomposing them into
9. Preprocessing the point lightsources finite number of small lightsources and preprocess the scene
As other global radiosity methods, this method is efficient I" @ Way proposed by the previous section. However, due to
for large area lightsources but loses its advantages if the € fact that the first-shot dfpoint lightsources requirels
lightsources are smalf. This problem can be solved by a additional vanablc_as per patch, _thls approach bec_omes very
“first-shot that shoots the power of the point lightsources Memory demanding. Thus a different approach is needed,
onto other surfaces, then removes them from the sgene Which decomposes the transport operator instead of subdi-
Since the surfaces can also be non-diffuse, the irradiance re-Viding the lightsources.
ceived by the patches from each point lightsource should be | et us express the BRDF of the surfaces as a sum of the

stored (this requiresadditional variables per patch, where iffuse and non-diffuse (specular) terms (note that the avail-
L is the number of point lightsources). The secondary, non- aple BRDF representations do exactly this),
diffuse emission to a direction is computed from these irra-

diances. fr(W', B,w) = fa(Z) + fra(w', Z,w)
Formally, the unknown radiance is decomposed into and let us express the transport operator as the sum of diffuse
two terms: and non-diffuse reflections:
L=L?+L"" (57) T =Ta+ Tna,

(© Institute of Computer Graphics 1998
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_ - N ot N g7 metallic objects tessellated to 9605 patches, and is illumi-
Tal = /L(h(m’ —w)w) - cost O £ () du nated by both area (ceiling) and point (right-bottom corner)
Q lightsources. The specular reflection has been modeled by a
physically plausible modification of the Phong model, that is
TraLl = /L(h(f, —w'),w') cos* 0 fra(w', T,w) dw. particularly suitable for metads A global radiance transfer
took about 0.7 second on a Silicon Graphics O2 computer.

@ Since the radiance information of a single patch is stored

in 18 float variables (1 for the emission, 1 for the irradiance

The basic idea of the “diffuse shot” technique is thaL® A o
can be calculated in a preprocessing phase by known tech_generated by the point lightsourde{D+1)/2 = 15 for the

- : e . irradiances and 1 for the accumulating radiance perceived
niques, for example, by a gathering-type radiosity algorithm. : " .
. e . from the eye), the extra memory used in addition to storing
The storage of the foun@; L° requires just one variable per the scene is only 0.7 Mbytes
patch (this is why we handled the diffuse reflection sepa- e '

rately). A similar scene consisting of 9519 patches has been ren-
dered by stochastic iteration (figure 31). The left image has
=N =N been calculated by 500 steps which took 9 minutes.

!
j ’\/\/ k\ Figure 32 shows a fractal terrain containing 14712 patches
= K al after 500 global walks which provide an accuracy within
2 percents. The illumination comes from both a sperical
- lightsource placed close to the mountain and from the ho-
diffuse specular "emission" orly specular mogenous sky-light. A global radiance transfer took approx-
imately 1.1 seconds and the radiance information required 1

Mbytes.

Figure 29: First step of the diffuse shot technique
In figure 33 the fractal surface has been tessellated further

and waves are added to the water. This scene contains 59614
Then, during the global walks, the first step should only be patches and has been rendered by the stochastic iteration (45
responsible for the non-diffuse reflection. The diffuse partis minutes computation time).
added to the result of this first step. Note that this method
handles the first step in a special way, thus it requires the
different bounces to be stored separately, as it is done by the11. Conclusions

combined and bi-directional methods. ) ) .
This paper presented a combined finite-element and random-

In order to formally present the idea, let us denote the re- walk algorithm to solve the rendering problem of complex

sult of the diffuse shot byLqi¢. The calculation of thel- scenes including also glossy surfaces. The basic idea of the
bounce irradiancel; for d = 1,2, ... is modified as fol- method is to form bundles of parallel rays that can be traced
lows: efficiently, taking advantage of the z-buffer hardware. Un-

like other random walk methods using importance sampling
, , , 10,1546 this approach cannot emphasize the locally impor-
dm - A(wp-a) - (Fnd(WDfdJrlawad) J1+ Ldiﬁ) tant directions, but handles a large number (1 million) paral-
47 - A(wp_q) - F(W,D—dJrl;W,D—d) Ja1, lel rays simultaneously instead, thus it is more efficient than
those methods when the surfaces are not very specular.

Jo = A(wp) - L*(wh),
J:
Ja

whereF,,4 is the non-diffuse reflectance function.

The time complexity of the algorithm depends on the used
global visibility algorithm. For example, the global painter's
algorithm hasO(n log n) complexity @ is the number of
patches), which is superior to thgn?) complexity of clas-
L=Lf+TL+T°LE+T3LE+... = sical, non-hierarchical radiosity algorithms.

The method can also be explained as a restructuring of the
Neumann-series expansion of the solution of the rendering
equation in the following way:

The memory requirement is comparable to that of the
(L + TaL®) + TnaL® + T(TaL® + TaLl®) +... (62) diffuse radiosity algorithms although the new algorithm is
also capable to handle non-diffuse reflections or refractions.
Since global ray-bundle walks are computed independently,
the algorithm is very well suited for parallelization.

where7;L¢ is known after the preprocessing phase.

10. Simulation results . . .
In order to incorporate importance sampling, the

Figure 30 shows a scene as rendered after the first shot andMetropolis and VEGAS methods have been considered, but
after 500 walks of length 5. The scene contains specular, only the Metropolis method was examined in details. For
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Figure 30: A scene after the “first-shot”(left) and after 500 global walks (right)

Figure 31: A scene of a Beethoven and a teapot rendered by stochastic iteration after 500 iterations (left) and when fully
converged (right)

(© Institute of Computer Graphics 1998
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Figure 32: A smooth mountain with a nearby “moon” and a flat lake

Figure 33: A rocky mountain with a nearby “moon” and a “wavy” lake

(© Institute of Computer Graphics 1998
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homogeneous scenes, Metropolis sampling could not pro- 6.
vide significant noise reduction compared to quasi-Monte
Carlo walks. This is due to the fact that the integrand of
equation (7) is continuous and is of finite variation unlike
the integrand of the original rendering equation, thus if its
variation is modest then quasi-Monte quadrature is almost
unbeatable. If the radiance distribution has high variation
(difficult lighting conditions), then the Metropolis method 8.
becomes more and more superior. On the other hand, the
Metropolis method is sensitive to its parameters such as the
extent of perturbation. Future research should concentrate on™"
the automatic and “optimal” determination of these control
parameters.

The paper also presented an unbiased algorithm that was
based on stochastic iteration. This algorithm seems to be sig-
nificantly better than the finite-length approaches, in terms of
both speed and storage space.

11.
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